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 This is the second in a series of two articles that 
look at the lessons for clinical medicine from 
systems biology.

  In the fi rst article in this series, 
we examined the reductionist 
approach that pervades medicine 

and explained how a systems approach 
(as advocated by systems biology) 
may complement it [1]. In order for 
a systems perspective to have any 
practical clinical signifi cance, we must 
understand when a systems perspective 
is or is not helpful, and conversely 
when a reductionist approach is 
helpful. In addition, we must be able 
to envision how a systems perspective 
can be implemented to appreciate 
the potential benefi ts derived from its 
application. In this article, we address 
these issues and present a practical 
discussion of systems application to 
medicine.

  Indications for Systems Approach 
and Reductionism

  Reductionism, as a guiding principle, 
is tremendously helpful and useful. 
The problem with reductionism stems 
not from its use but from the wrongful 
assumption that it is the only solution. 
Reductionism becomes less effective 
when the act of dividing a problem 
into its parts leads to loss of important 
information about the whole. For 
instance, a complex machine such as an 
airplane or a computer may be divided 
into smaller and smaller fragments, but 
at some point, the individual parts fail 
to impart consequential information 
about the machine’s overall 
function. The primary side effect of a 
reductionist approach is that the act 
of reduction (from larger to smaller) 
disregards component–component 
interactions and the dynamics that 
result from them. Therefore, as a 
general rule, reductionism is less 
helpful for systems where interactions 
between components dominate the 
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 Figure 1.  Medical Treatments: Reductionism versus Systems Science 
   Treatment differences stem from divergent problem-solving tactics. Reductionism focuses on 
components and, in the process, can lose information about time, space, and context. Systems 
science focuses on the interactions and dynamics and spends less time studying the individual 
components. 
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components themselves in shaping the 
system-wide behavior (Table 1). 

  In clinical medicine, complex, 
chronic diseases such as diabetes, 
coronary artery disease, or asthma 
are examples where this rule may 
apply. In these examples, a single 
factor is rarely implicated as solely 
responsible for disease development or 
presentation. Rather, multiple factors 
are often identifi ed, and the disease 
evolves through complex interactions 
between them. Consequently, a 
perspective in which the interactions 
and dynamics are centrally integrated 
into the analytical methods may be 
better suited. Systems perspectives, 
unlike reductionisms, focus on these 
interrelationships and therefore may 
be the optimal method for complex 
chronic diseases.

  Where reductionism is helpful, 
when a systems approach is not, is 
when one or several components 
overwhelmingly infl uence the systems 
behavior. Diseases such as urinary 
tract infection, acute appendicitis, or 
aortic dissection are driven primarily 
by a single pathology amenable to 
a specifi c intervention. Arguably, 
these conditions would do poorly 
under a systems approach, where 
lengthy analysis and comprehensive 
data acquisition are often required. 
Reductionism works best when an 
isolatable problem exists and where a 
quick and effective solution is needed. 
For that reason, reductionism may 
generally be most effective for acute 
and simple diseases, whereas a systems 
approach may be most applicable to 
chronic and complex diseases.

  The Example of Diabetes

  Given that a systems approach is likely 
applicable to complex chronic diseases, 
how might it infl uence the treatment 
of a complex disease such as diabetes? 
Research has shown that diabetes is 
a multidimensional disorder. Factors 
such as genetics, infl ammation [2–7], 
PPAR-gamma [8], leptin [9], cortisol 
[10], diet [11], and body mass index, 
among others, have been implicated 
in some form with its pathogenesis. 
The fundamental distinctiveness 
of systems medicine is not just the 
recognition that these complex factors 
are important in disease management, 
but that they need to be incorporated 
in some meaningful way to treatment 
selection and delivery. The primary 

challenge tackled by systems scientists 
is the rigorous elucidation of how 
these multiple variables dynamically 
interact and how one can apply this 
understanding to affect the system and 
achieve a desirable end. 

  While this approach seems extremely 
complicated and diffi cult, the advent 
of computers and mathematical tools 
has opened avenues not deemed 
possible before. For the medical 
community, the more imminent hurdle 
may be our inability to envision and 
thus appreciate the potential benefi ts 
derived from the application of a 
systems approach. To obtain a glimpse 
of how systems principles will affect 
medicine, we consider three concepts 
central to systems medicine that are 
often overlooked through reductionist 
approaches: time, space, and context.

   Time.  Our present diagnosis 
of diabetes requires two separate 
documentations of fasting glucose 
over 6.9 mmol/L or a two-hour oral 
glucose tolerance test result above 
11.1 mmol/L. The criterion relies on 
a measurement obtained at a single 
point in time, ideally eight hours after 
a meal or two hours after a glucose 
load. The theoretical disadvantage of 
this defi nition is that the diagnosis is 
established much after the underlying 
abnormality has begun. To use 
the analogy of a blocked sink—the 
problem is defi ned only when the water 
overfl ows, despite the fact that the 
draining problem has occurred some 
time beforehand. A more sensitive 
method for detecting a problem may 
be to evaluate the rate of change in the 
water level—whether the water level 
steadily increases with time or whether 
it fails to decrease in response to a large 
water input—in other words, to assess 
the dynamics of the variable of interest. 

  While this example is a gross 
oversimplifi cation, it highlights a 

fundamental tenet of systems medicine, 
namely, that the dynamics may contain 
more revealing information about a 
system than static data alone. To apply 
this tenet to diabetes, one might assess 
the likelihood that glucose variability 
or the change in insulin levels over 
time may provide useful diagnostic 
information not otherwise obtained 
through traditional methods. Some 
evidence already exists to support this 
supposition. Healthy individuals show 
pulsatile insulin secretions of about six- 
to ten-minute periodic oscillations [12], 
whereas people with type 2 diabetes 
have impaired insulin oscillations [13], 
which also fail to entrain with repeated 
glucose infusions [14,15]. Interestingly, 
impaired pulsatile secretions have been 
detected in metabolically normal yet 
predisposed individuals (fi rst-degree 
relatives of people with type 2 diabetes) 
[16,17], suggesting that these dynamic 
evaluations may be more sensitive in 
detecting beta-cell dysfunction than 
traditional methods [18]. Because of 
the promise of dynamic analysis in 
diabetes, many other methods have also 
been evaluated [19–21]. 

  Because glucose levels are continually 
regulated through a dynamic balance 
between glucose-lowering factors (such 
as insulin) and glucose-elevating factors 
(such as glucagons, growth hormone, 
or epinephrine), the manner in which 
glucose varies over time may refl ect 
the functional health of the relevant 
metabolic pathways. The premise 
is that glucose regulatory pathways 
are inextricably interconnected and 
that any dysfunction in the pathway 
is refl ected in the glucose/insulin 
dynamics. The temporal changes 
of a variable contain hidden, useful 
information about the overall system. 
As a consequence, a systems approach 
to medicine will likely incorporate 
temporal variability into diagnosis and 

 Table 1.  Application of Reductionism versus Systems-Oriented Perspective to Medicine  

Characteristics Reductionism Systems-Oriented Perspective

Optimal Conditions where one or few components 

are responsible for the overall behavior of 

the system 

Conditions where interactions between 

components are responsible for the 

overall behavior of the system

Disease types Acute, simple diseases Chronic, complex diseases

Examples Urinary tract infection Diabetes

Appendicitis Coronary artery disease

Aortic aneurysm Asthma

Theoretical limitations Disregards component–component 

interactions and dynamics 

Costly in resources and time 

 DOI: 10.1371/journal.pmed.0030209.t001 
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treatment in a way that reductionist 
medicine has never done before.

   Space.  When chemstick glucose 
levels are obtained, there is an implicit 
assumption that the geographic 
distribution of glucose is uniform: 
A chemstick in the right fi nger is 
equivalent to a chemstick from the 
left fi nger or a venous puncture 
reading from an antecubital region. 
But glucose, even plasma glucose, 
possesses spatial differences [22] 
that are frequently overlooked in 
clinical practice. The same can be said 
about insulin injections. Injections 
in the thigh are often considered 
just as effective as injections in the 
abdominal wall, despite evidence 
indicating that insulin absorption and 
distribution differ at different sites 
[23–25]. The problem confronted by 
clinical medicine is not so much the 
recognition that these variations occur, 
but rather the inability to incorporate 
spatial information into treatment or 
diagnostic decisions.

  In systems theory, spatial variability, 
much like temporal variability, is valued 
for its potential to impart system-level 
information. Analytic tools such as 
diffusion equations and fl uid dynamics 
are frequently used to evaluate the 
spatiotemporal patterns of various 
systems. Consequently, for diabetes, the 
application of systems principles may 
promote investigation and enhance 
understanding of the spatial variations 
of glucose and insulin within the 
human body. With proper tools and 
analytical techniques, we may someday 
be able to determine where insulin 
injections are most effective, how 
bodily glucose distribution can predict 
risk of diabetes, and how certain foods 
lead to unhealthy overstimulation 
of certain susceptible beta-islet cells. 
The one caveat, however, is that 
spatial information, such as glucose 
distribution, is diffi cult to acquire and 
may explain why spatial variability of 
glucose remains largely unexplored. 
Nevertheless, a systems approach may 
provide a much-needed conceptual 
tool for the study of spatial infl uence in 
medicine and thus may inform health 
providers where optimal solutions exist.

   Context.  One of the principal 
challenges for medical practitioners 
will be to curb our instinctive 
inclination to focus on disease rather 
than the individual. In diabetes, for 
instance, we are inclined to focus on 

the symptom—hyperglycemia—and 
to deliver treatments aimed directly 
at lowering glucose. While this 
approach is highly effective, a systems 
approach to medicine may redirect 
our attention away from the elevated 
glucose per se, toward the contextual 
milieu that fosters it. Dietary habits, 
sleeping behavior, immune system, 
genetics, psychiatric condition, medical 
comorbidities, and other factors can 
be systematically integrated into a 
physician’s selection and delivery of 
treatment. The individual, not the 
disease, achieves central importance in 
systems medicine.

  However, with a systems perspective, 
will treatments truly change? How 
can a patient with diabetes  not  receive 
glucose-lowering agents? How will 
“disease” be conceptualized, and 
will it be defi ned any differently? 
Fortunately, studies in systems biology 
have addressed similar questions and 
provide two important lessons for 
clinical medicine: (1) complex diseases 
may represent many different processes 
and (2) complex diseases may have 
varied and sometimes unintuitive 
treatments. 

  Systems biology’s fi rst lesson for 
clinical medicine can be derived from 
the RNA expression profi les of diffuse 
B cell lymphoma. The lymphoma’s 
genetic profi le yielded an unexpected, 
yet important discovery—namely 
that for a disorder once considered a 
single entity, at least three different 
genetic profi les exist: germinal-center 
B cell–like, activated B cell–like, and 
type 3 diffuse large B cell lymphoma 
[26]. Genetic profi les of other 
disorders—such as breast cancer [27], 
non-small-cell lung carcinoma [28], 
and acute lymphoblastic leukemia 
[29]—have similarly shown the 
existence of multiple subtypes. The 
conceptual breakthrough afforded by 

these fi ndings is the idea that seemingly 
single phenotypic entities can have 
multiple etiologic or pathologic 
processes. For clinical medicine, this 
may mean that diseases such as diabetes 
actually represent many different 
processes that do not become apparent 
until the composite factors (i.e., the 
context) are considered. Therefore, 
two patients with type 1 diabetes who 
have identical presentations may 
nevertheless have different pathogenic 
processes, and thus should be regarded 
differently. 

  The study of diffuse B cell lymphoma 
also showed that the three identifi ed 
subtypes have varied prognoses and 
responsiveness to chemotherapy 
[26,30,31]. Consequently, systems 
biology’s lesson can be extended one 
step further, to suggest that not only do 
different processes exist for a specifi c 
disease but that each process should 
be treated or handled differently. This 
notion encourages the personalization 
or individualization of medicine. 
One patient with type 2 diabetes may 
respond best to insulin, for example, 
while another may not. As a corollary 
to this statement, some patients with 
diabetes may not require glucose-
lowering agents at all, but instead may 
benefi t from a less obvious treatment. 
The determination of these optimal 
treatments will rest on the rigorous 
evaluation of the complex factors 
inherent in each and every patient. 

  Systems Medicine in Practice

  Systems medicine, as we see, begins 
to explore medicine beyond linear 
relationships and single parameters. 
Systems medicine involves multiple 
parameters obtained across multiple 
time points and spatial conditions 
to achieve a holistic perspective of 
an individual. The clinical practice 
that results from this paradigm will 

 Table 2.  Approaching Diabetes within a Systems Perspective  

Factor Systems-Oriented Practice

Time Assessing temporal variability of insulin or glucose as a means to predict or diagnose diabetes

Administering insulin at critical time junctures (aside from pre-meal/pre-sleep times) 

Assessing spatial distribution of insulin or glucose as a means to predict or diagnose diabetes

Space Administering insulin at sites with optimal effect

Context Using multiple parameters to determine the type of diabetes (beyond types 1 and 2) affecting 

the patient 

Administering individualized, sometimes unintuitive treatments (e.g., salicylates for certain 

individuals)

 DOI: 10.1371/journal.pmed.0030209.t002 
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be distinctly different from the status 
quo, particularly for complex diseases, 
as shown by our example of diabetes 
(Table 2). In general, treatments within 
systems medicine can be characterized 
by several distinguishing features 
(Figure 1).

   Individualized treatments.  Instead 
of formulating treatments according 
to disease, a systems clinician may 
prescribe treatments specifi cally 
targeted to individuals and their 
present conditions. 

   Minimized interventions.  Treatments 
can deliver the “biggest bang for 
the buck” so that the least invasive 
intervention may yield the greatest 
system-wide benefi t, maximize the 
body’s self-healing abilities, and 
minimize side effects. 

   Multidimensional uses of 
medications.  Medications may be used 
for unintended purposes because 
nonlinear, unintuitive relationships 
exist between pathogenic factors and 
disease. In diabetes, for example, 
evidence suggests the benefi ts of 
salicylates for glucose control in certain 
individuals [32–34].

   Time-sensitive treatments.  The 
human body, like most living systems, 
has cyclical variations that may affect 
treatment effi cacy. To maximize 
effectiveness, treatments can be 
delivered at selective times. Cancer 
chronotherapy is a working example: 
chemotherapeutic agents given on 
a timed regimen are more effective 
than a standard treatment approach 
[35–37]. 

   Space-sensitive treatments.  The 
effi cacy of certain treatments may 
depend on where the treatment is 
delivered. Future treatments may be 
localized to a specifi c part of the body 
to maximize system-wide effi cacy. 

   Synergistic treatments.  Use of more 
than one treatment or modality can be 
given so that the effects are synergistic 
and not antagonistic or merely additive.

   Probabilistic forecasting.  The 
probability of the success or failure of a 
particular treatment may be calculated 
specifi cally for an individual. 

   Temporary treatments.  Chronic 
treatments may be unnecessary. In 
systems biology, biological systems are 
understood to assume certain dynamic 
states—or “attractor states” [38,39]. 
Disease may represent certain attractor 
states, while health may represent 
others. If so, it is theoretically possible 

to affect the system dynamics and 
transform a diseased state to a healthy 
one through limited interventions [40]. 
Because these states are effectively 
stable, chronic treatments may be 
unnecessary. 

  These practices and concepts are 
not new to medical systems. Medical 
traditions such as traditional Chinese 
[41], Native American [42], and 
certain Western medicines have for 
centuries incorporated these practices 
in their care of patients, mainly due 
to the philosophical belief that the 
world (including humans) is dynamic 
and interactive. Unlike modern 
systems medicine, however, human 
intuition and observation rather than 
mathematical/computational tools 
served as the basis for advancing 
medical knowledge.

  Barriers to Systems Medicine

  Widespread benefi ts of systems 
medicine will not be realized until 
six key barriers are overcome. First, 
the network relationships will need to 
be elaborated in detail. In diabetes, 
for instance, we lack the in-depth 
knowledge of how diet, infl ammation, 
PPAR-gamma, genetics, and other 
factors interrelate and infl uence each 
other’s behavior. Secondly, a feasible 
and cost-effective means to acquire 
comprehensive data will need to be 
developed. Clinical medicine at the 
present moment lacks an equal to the 
DNA array chip that enables numerous 
parameters to be economically 
obtained at once. In addition, we 
lack the means to obtain measures 
across multiple temporal and spatial 
conditions without causing patient 
inconvenience and excessive costs. 
Third, the optimal balance between 
too little information and too much 
information needs to be established. 
Often, accumulation of information 
beyond a certain point may contribute 
to costly expenditures without 
adding any effective understanding 
of the system. Fourth, the analytical 
tools for determining how to affect 
biological networks and obtain the 
desired effect need to be perfected. 
How should we calculate the needed 
adjustments to our patients’ diets 
to minimize their pancreatic beta-
cell loss? The mathematical and 
computational tools are available but 
still imperfect. Fifth, the theoretical 
and experimental methods should 

be effectively integrated in order 
for systems science to truly advance. 
Finally, complex analysis is inherently a 
long-term, broad-based investment. To 
investors and researchers accustomed 
to immediate, predictable results, 
this consideration may present the 
greatest barrier, causing many to doubt 
whether the not-so-apparent benefi ts 
merit further fi nancial or temporal 
commitment. 

  Despite these challenges, the 
realization of systems medicine may 
not be as distant as many may think. 
Already a computer program called 
Archimedes has been developed for 
the complex modeling of diabetes 
and predicts diabetes-related clinical 
outcomes with uncanny accuracy 
[43,44]. Archimedes is just a sample of 
the many more systems-level programs 
that will likely emerge within the next 
fi ve to ten years.

  Conclusion

  Systems medicine encompasses a 
broad scope of topics, many of which 
have been untouched in this two 
part series. Examples include scaling, 
stochasticity, attractor states, plasticity, 
systems defi nition of health, and many 
others. The challenges of incorporating 
systems science into medicine are 
diffi cult but not insurmountable. In 
fact, systems biologists, who deal with 
thousands of genes and proteins, may 
arguably be confronted with a much 
more daunting task. Nevertheless, 
systems biologists have recognized the 
necessity of a systems perspective. It is 
time that physicians, clinical researchers, 
physiologists, and epidemiologists 
did the same. The specifi c task to be 
faced is the system-level understanding 
of human health and disease at the 
organ, organism, and community level. 
This effort has great potential for the 
advancement of medicine. � 
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