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• We propose MJPE method to study the synchronism between two time series.
• We apply MJPE method to the simulated time series to test the validity.
• The results show the necessity of multiscale and prove the effectiveness of MJPE.
• MJPE method is employed to the financial and traffic time series.
• MJPE results present the synchronisms from multiscale view successfully.
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a b s t r a c t

In this paper, we propose the multiscale joint permutation entropy (MJPE) to study the
synchronism between two complex time series from the view of ordinal pattern and
multiple scales. First, we use the Rossler system using active control, two-component
ARFIMA processes to test the effectiveness of MJPE and also add some noise to the ARFIMA
time series and apply MJPE to find the effect of noise. The results show the necessity
of investigating the synchronism on the multiple scales, prove the effectiveness of MJPE
method and show the sensitiveness of MJPE method to noise. Then MJPE method is
employed to financial time series and traffic time series to validate the applicability of the
proposed MJPE method for the complex time series in the real world. The conclusion from
these MJPE results for financial time series is consistent with the actual situation of the
synchronism and correlation between stock indices. Meanwhile, the results for traffic time
series suggest the need for study the synchronism from the perspective of multiple scales
and point out the different synchronisms for traffic time series of weekdays andweekends.
MJPE method has a broad application prospect on the investigation of synchronism on the
complex time series from different fields.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Numerous techniques including Lyapunov exponent, fractal dimension and entropy, have been proposed and applied
to measure the complexity of time series. Shannon proposed the concept of entropy and then various concept of entropy
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has been developed such as approximate entropy introduced by Pincus [1–3], sample entropy developed by Richman [4,5].
Entropy not only measures the uncertainty and disorder of the time series, but also does not impose any constraints on
the theoretical probability distribution [6,7]. Thus, it is very helpful to analyze complex time series. Permutation entropy
(PE) is one of complexity measures which is based on comparing neighboring values of each point and mapping them to
ordinal patterns [8]. Using ordinal descriptors is helpful in the sense that it adds immunity to large artifacts occurring with
low frequencies. It has been proved that PE is applicable for regular, chaotic, noisy time series. Furthermore, PE has been
employed to real-world time series in diverse fields such as nervous system [9], electroencephalographic (EEG) [10–13],
electrocardiographic (ECG) [14,15], stock market [16] and traffic systems [17].

It is known to us that sample entropy was extended to determine the relation between two time series, by a correlation
of their sample entropy, and to give a statistic termed cross sample entropy, which provides an indication of the degree of
synchronizing between the signals [4]. As to PE, it is interesting andmeaningful to explore how to apply the concept of PE to
study the synchronism between time series. As a result, we propose the joint permutation entropy (JPE) for two time series.

Traditional entropy-based algorithms only consider one single scale. However, real-world time series from dynamical
complex systems usually show multiscale structure and single scale based entropy fails to reveal the multiscale properties
in the complex systems. Recently, a new entropy method termed multiscale entropy (MSE) [18–20] has been proposed and
can represent the complexity over a range of scales by calculating their sample entropies. The multiscale concept resolves
the contradiction that an increase of entropymay not always correspond to an increase in complexity [21]. As a result, it has
been used in many different fields successfully [22–31]. In this paper, we further combine JPE with the concept of multiscale
and propose the multiscale joint permutation entropy (MJPE) in this paper to detect the properties between two complex
time series from the view of ordinal pattern and multiple scales.

The reminder of the paper is organized as follows. Section 2 briefly introduces the multiscale joint permutation entropy
we proposed. In Section 3, we use simulated time series to test the effectiveness of MJPE and study the effect of noise to
MJPE. Applications to the financial time series and traffic time series are presented in Section 4. Finally, we offer concluding
remarks in Section 5.

2. Multiscale joint permutation entropy

We develop PE into MJPE to study the multiscale structure of the synchronism between time series. Consider two time
series {xt , t = 1, 2, . . . ,N} and {yt , t = 1, 2, . . . ,N}, where N is the equal length of the time series. Then we construct the
coarse-grained dimensional time series {X s

k} and {Y s
k} as

X s
k =

1
s

ks∑
t=(k−1)s+1

xt

Y s
k =

1
s

ks∑
t=(k−1)s+1

yt

(1)

where s represents the scale factor and 1 ≤ k ≤ M = N/s. The length of each coarse grained time series is equal to the length
of original time series divided by the scale factor s. First we calculate joint permutation entropy for these coarse grained time
series as following procedure. For the coarse grained time series {X s

k} and {Y s
k}, we construct their time-delay embedding

representations Zd,τ ,s
1,l = {X s

l , X
s
l+τ , . . . , X

s
l+(d−1)τ } and Zd,τ ,s

2,l = {Y s
l , Y

s
l+τ , . . . , Y

s
l+(d−1)τ } for l = 1, 2, . . . ,M− (d−1)τ ,where d

and τ denote the embedding dimension and timedelay, respectively. To compute JPE, each of the T = M−(d−1)τ subvectors
is assigned a single motif out of d! possible ones (representing all unique orderings of d different numbers). Thus, when we
calculate the joint frequencies which denote the probability that the two time series have the certain motif respectively at
the same time, there are d! × d! possible conditions. For example, if we choose the embedding dimension as 3, there are 6
motifs for each time series as shown in Fig. 1 and 36 different possible motif combinations.

JPE is then defined as the Shannon entropy of the d! × d! distinct motif combinations {(πd,τ
i , π

d,τ
j )}, denoted as Π :

JPE(d, τ ) = −

∑
i,j:(πd,τ
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(3)

where type(·) denotes the map from pattern space to symbol space and ∥ · ∥ denotes the cardinality of a set. The maximum
value of JPE is ln(d!×d!), which implies that allmotif combinations have an equal probability. The smallest value of JPE is zero,
which implies it is a mere repetition of the same basic motif combination. Thus JPE varies in the range [0, ln(d! × d!)] and is
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Fig. 1. The six different motifs for each time series when the embedding dimension is choose as 3.

invariant under nonlinear monotonic transformations. For convenience, we normalize JPE by its maximum value ln(d!×d!):

0 ≤
JPE(d, τ )
ln(d! × d!)

≤ 1 (4)

Besides, we also define a variance to measure the correlation between these series as follow

variance_JPE(d, τ ) =

∑
i,j:(πd,τ

i ,π
d,τ
j )

[p(πd,τ
i , π

d,τ
j ) − p(πd,τ

i , ·) × p(·, πd,τ
j )] (5)

where p(πd,τ
i , ·) denotes the probability of the first time series has the ith motif regardless of the second time series, while

p(·, πd,τ
j ) denotes the probability of the second time series has the jth motif regardless of the first time series. Then after the

calculation of the normalized JPE for each coarse grained time series we obtain theMJPE with scale factor s and then plot the
MJPE. The variance of MJPE is also obtained. It can be seen from Eq. (3), (5) that the MJPE value is bigger which indicates the
synchronism between time series is lower and the variance is smaller which shows the correlation between time series is
lower. The embedding dimension d decides the number of accessible states and thus plays an important part in estimating
the joint permutation probability distribution P . Similar as the previous study on PE, the choice of d depends on the length
N of the time series, in such a way that the constraint (d! × d!) ≪ N must be satisfied in order to obtain reliable statistics.
Bandt and Pompe [8] recommend d = 3, 4, . . . , 7 in the PE method for practical purposes when the constraint is d! ≪ N .
Besides, increasing embedding dimension d affects the running time without significantly changing the obtained entropies.
Hence, without loss of generality, we choose the embedding dimensions d as 3 for simplicity and convenience. Meanwhile,
the time delay τ is chosen as 1 in order to avoid cross effects.

3. Numerical experiments for artificial time series

Before discussing multiscale analysis of practical time series and its interpretation, we illustrate MJPE method to
simulated examples where a judgment can be made about the validity and accuracy of the method. In this section, we use
artificial time series including Rossler systems using active control, two-exponent ARFIMAprocesses to test the effectiveness
of the method and the effect of noise to the MJPE method.

3.1. Rossler systems using active control

First, we apply MJPE to the Rossler system without and with active control [32–37]. The Rossler system [34] is described
by the set of ordinary differential equations

ẋ = −y − z,

ẏ = x + ay,

ż = b + z(x − c)

(6)
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In this paper, we assume that we have two Rossler systems and that the drive system with the subscript 1 is to control the
response system with subscript 2. The drive and response systems are defined as follows:

ẋ1 = −y1 − z1,

ẏ1 = x1 + ay1,

ż1 = b + z1(x1 − c)

(7)

and
ẋ2 = −y2 − z2 + u1(t),

ẏ2 = x2 + ay2 + u2(t),

ż2 = b + z2(x2 − c) + u3(t)

(8)

The response system (8) introduces three control functions u1(t), u2(t) and u3(t) and we subtract (7) from (8) in order to
estimate the control functions.

x3 = x2 − x1,

y3 = y2 − y1,

z3 = z2 − z1

(9)

Then an error system is defined as the differences between the Rossler systems (7) and (8). Using this notation, we obtain
the error system as follow

ẋ3 = −y3 − z3 + u1(t),

ẏ3 = x3 + ay3 + u2(t),

ż3 = x2z2 − x1z1 − cz3 + u3(t)

(10)

x3, y3 and z3 are called the error states. We can get the synchronization between the Rossler systems by using the control
functions to achieve the asymptotic stability of the zero solution of the error system (10). The active control functions
u1(t), u2(t) and u3(t) are defined as follows:

u1(t) = V1(t),

u2(t) = V2(t),

u3(t) = x1z1 − x2z2 + V3(t)

(11)

So the error system (10) changes into

ẋ3 = −y3 − z3 + V1(t),

ẏ3 = x3 + ay3 + V2(t),

ż3 = −cz3 + V3(t)

(12)

There are many possible choices for the control V1(t), V2(t) and V3(t). We choose(V1(t)
V2(t)
V3(t)

)
= A

(x3
y3
z3

)
(13)

where A is a 3 × 3 constant matrix. In order to make the closed loop systemwill be stable, the proper choice of the elements
of the matrix A is such that the feedback system must have all of the eigenvalues with negative real parts. In this paper the
matrix A is chosen in the form (14) which makes the closed loop system (12) have the eigenvalues −1, −1 and −1.

A =

(
−1 1 1
−1 −(1 + a) 0
0 0 c − 1

)
(14)

With this choice, the error states x3, y3 and z3 will converge to zero as time t tends to infinity and hence achieve the
synchronization of drive and response systems.

According to the paper [35], we choose numerical values for the parameters in (6) as a = 0.2, b = 0.2, c = 5.7 to
insure the chaotic behavior of Rossler system.We use fourth-order Runge–Kutta method to solve the systems of differential
Eqs. (7) and (8) with time step size equal 0.001 in these numerical simulations. The initial values of the drive system are
x1(0) = 0.5, y1(0) = 1, z1(0) = 1.5 and the initial values of the response system are x2(0) = 2.5, y2(0) = 2, z2(0) = 2.5.
Then the initial values for the error states are x3(0) = 2, y3(0) = 1, z3(0) = 1. Based on these parameters and initial values,
we can obtain the identical Rossler systemwithout active control and with active control. We apply the MJPE method to the
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Fig. 2. MJPE results for the two identical Rossler systems without and with active control.

Fig. 3. Variance of MJPE for the two identical Rossler systems without and with active control.

time series x1&x2 without active control, x1&x2 with active control, y1&y2 without active control, y1&y2 with active control,
z1&z2 without active control, z1&z2 with active control, and their MJPE results and variance of MJPE are shown in Figs. 2, 3,
respectively. It can be found thatMJPE results for the Rossler systemswith active control are lower than those for the Rossler
systems without active control, which means higher synchronism. Variances of MJPE also show stronger correlation for the
Rossler systems with active control. It confirms the fact that using active control achieves the synchronization between
Rossler systems and presents the effectiveness of MJPE.

3.2. Two-component ARFIMA process

The power-law auto-correlations in stochastic variables can be modeled by an ARFIMA process [38,39]:

z(t) = Z(d, t) + εz(t) (15)

where d ∈ (0, 0.5) is a memory parameter, εz is an independent and identically distributed Gaussian variable, and
Z(d, t) =

∑
∞

n=1 an(d)z(t − n), in which an(d) = dΓ (n − d)/[Γ (1 − d)Γ (n + 1)] is the weight. The Hurst index Hzz is related
to the memory parameterized by [40,41]. For the two-component ARFIMA processes discussed below, we take Z = X or Y .
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Fig. 4. MJPE results for the series simulated by two-component ARFIMA process with d1 = d2 = 0.4 and W from 0.5 to 1.

The two-component ARFIMA process is defined as follows [40]:{
x(t) = WX(d1, t) + (1 − W )Y (d2, t) + εx(t)
y(t) = (1 − W )X(d1, t) + WY (d2, t) + εy(t)

(16)

whereW ∈ [0.5, 1] quantifies the coupling strength between the two processes x(t) and y(t). The cross-correlation between
two processes x(t) and y(t) decreases with the increasingW from 0.5 to 1[38]. WhenW increases to 1, x(t) and y(t) are fully
decoupled and become two separate ARFIMA processes as defined in Eq. (15).

Without loss of generality, we choose W = 0.8 and the parameters (d1, d2) of ARFIMA as d1 = d2 = 0.4 and d1 = 0.1,
d2 = 0.4 separately, and corresponding two error terms εx(t) and εy(t) share one independent and identically distributed
Gaussian variable with zero mean and unit variance. We apply MJPE method to the series simulated by two-component
ARFIMAprocess. Figs. 4, 5 showMJPE and variance ofMJPE between the series simulated by two-component ARFIMAprocess
with d1 = d2 = 0.4,W from 0.5 to 1, while Figs. 6, 7 presentMJPE and variance of MJPE results between the series simulated
by two-component ARFIMA process with d1 = 0.1, d2 = 0.4, W from 0.5 to 1, respectively. The numerical results are
quantified by calculating 100 pairs of independent ARFIMA series with d1 = d2 = 0.4 and d1 = 0.1, d2 = 0.4 separately.
Because 100 pairs of independent ARFIMA series are used and each series contains 4096 data points, we can obtain themeans
and standard errors of entropy and variance values which have been shown in Figs. 4–7. It can be seen from Figs. 4, 6 that the
MJPE results become larger when W increases from 0.5 to 1 indicating the synchronism between these time series become
lower. Meanwhile, the variances of MJPE in Figs. 5, 7 get lower when W increases from 0.5 to 1. Moreover, MJPE results
of ARFIMA series with W from 0.5 to 1 are similar when scale changes from 1 to 3 in Figs. 4, 6, while variance of MJPE of
ARFIMA series withW from 0.5 to 1also show the similarity when scale changes from 1 to 3 in Figs. 5, 7. It suggests necessity
of investigating the synchronism on the multiple scales. Both behaviors of MJPE and variance of MJPE are consistent with
the fact that synchronism and correlation decrease when W increases from 0.5 to 1, which means MJPE method is applied
to ARFIMA series to detect the synchronism on multiple scales 1–20 successfully.

Then we add some noises to the ARFIMA time series and apply MJPE to find the effect of noise on the results. Without
loss of generality, we use the series simulated by two-component ARFIMA process with d1 = d2 = 0.4, W = 0.5 as an
example. Somewhite noise is added to one of the ARFIMA series and the percentage of noise changes from 10% to 100%with
step 10%. The MJPE and variance of MJPE for these time series are shown in Figs. 8, 9, respectively. It is obvious to find that
the MJPE becomes larger and variance of MJPE becomes smaller when percentage of noise increases, which also prove the
effectiveness of MJPE method and show the sensitiveness of MJPE method to noise.

4. Analysis for the real-world time series

In order to validate the applicability of the proposed MJPE method for the complex time series in the real world, we then
apply MJPE method to financial time series and traffic time series.

4.1. Analysis for financial time series

Recently, stock markets have become active areas and attracted much attention. Stock market indices are important
measures of financial and economical performance and are normally used to benchmark the performance of stock portfolios.
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Fig. 5. Variance of MJPE for the series simulated by two-component ARFIMA process with d1 = d2 = 0.4 and W from 0.5 to 1.

Fig. 6. MJPE results for the series simulated by two-component ARFIMA process with d1 = 0.1, d2 = 0.4 and W from 0.5 to 1.

The study of the international stockmarkets is attractive for both fundamental and practical researches. On the fundamental
side, a financial market has been referred to as an example of a complex system consisting of many interacting components.
An abrupt variant on a certain component can be spatially affected by the others as well as itself temporally. Statistical
motivations are to visualize correlations in order to suggest some potentially plausible parameter relations and restrictions.
On the practical side, economicmotivations are to identify themain factorswhich affect the behavior of stockmarkets across
different exchanges and countries. Moreover, it is important for evaluating the risk of an investment in the stock market.
The understanding of such relations would be helpful to design good portfolios [42,43]. It is therefore of great interest to
analyze the synchronisms embedded in international stock markets.

In this paper, we use the daily price return of six stock indices including three US stock indices (S&P500, DJI, NQCI) and
three Chinese stock indices (ShangZheng(SZ), ShenCheng(SC), HSI) from January 3, 1997, to December 28, 2012. In order to
make these indices have the same opening dates and obtain the same length time series, we exclude the asynchronous data
and then reconnect the remaining parts of the original series. As a result, the total of the closing prices recorded is 3572 days.
Generally, the daily price return rt is used to investigate the time series of stock market. It is calculated as the logarithmic
difference of the closing price, i.e. rt = log(xt ) − log(xt−1) where xt denotes the closing price for a stock index on day t . The
daily price returns of six stock indices are shown in Fig. 10.
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Fig. 7. Variance of MJPE for the series simulated by two-component ARFIMA process with d1 = 0.1, d2 = 0.4 and W from 0.5 to 1.

Fig. 8. MJPE results for the series simulated by two-component ARFIMA process with d1 = d2 = 0.4,W = 0.5 with different percent of noise from 10% to
100%.

We apply theMJPEmethod to these time series and present theMJPE results and variance of MJPE for the stock indices in
the same region: S&P500&DJI, S&P500&NQCI, DJI&NQCI (US), and SZ&HSI, SC&HSI, SZ&SC (China) in Figs. 11, 12. For US stock
markets, theMJPE for S&P500&DJI fluctuates in the range (0.7, 0.75), theMJPE for S&P500&NQCI fluctuates in the range (0.72,
0.8) and the MJPE for DJI&NQCI fluctuates around 0.85. For Chinese stock markets, the MJPE for SZ&HSI, SC&HSI fluctuate in
the range (0.95, 1) and the MJPE for SZ&SC varies from 0.72 to 0.79. The MJPE for SZ&HSI, SC&HSI are larger than the others,
while their variances of MJPE are smaller than the others, which means the synchronism of SZ&HSI, SC&HSI is smaller. The
MJPE and variance of MJPE for DJI&NQCI are different from the other three which shows a smaller synchronism. Meanwhile,
the MJPE and variance of MJPE for S&P500&DJI, S&P500&NQCI, SZ&SC show their synchronisms are larger. Then the MJPE
method is employed to study the synchronism for the stocks markets between US and China: S&P500&SZ, S&P500&SC,
S&P500&HSI, DJI&SZ, DJI&SC, DJI&HSI, NQCI&SZ, NQCI&SC, NQCI&HSI and their results are shown in Figs. 13, 14. MJPE results
for S&P500&SZ, S&P500&SC, DJI&SZ, DJI&SC, NQCI&SZ, NQCI&SC are similar and larger than those for S&P500&HSI, DJI&HSI,
NQCI&HSI, while their variances of MJPE are similar and smaller than those for S&P500&HSI, DJI&HSI, NQCI&HSI as well.
It can be found that the synchronisms between HSI and US stock markets are higher, while the synchronisms between
HSI and stock markets in Chinese mainland, which is consistent with the actual situations that the US stock markets have
stronger influence on the stock markets in Hong Kong than in Chinese mainland. Meanwhile, by comparing the MJPE results
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Fig. 9. Variance of MJPE for the series simulated by two-component ARFIMA process with d1 = d2 = 0.4,W = 0.5 with different percent of noise from
10% to 100%.

Fig. 10. Daily price returns for the S&P500, DJI, NQCI, SZ, SC, and HSI stock indices.

in Figs. 11 and 13, we find the MJPE results in the same region are smaller than the MJPE results in the different region. It is
consistent with the conclusion obtained in previous studies [44–49] that the stock indices from the same region have larger
synchronism. Besides, it can be found that the MJPE and variance of MJPE for the stock indices in the same region fluctuate
with the scale s, while the MJPE for the stock indices in the different regions decrease with scale s and their variance of MJPE
increase with scale s, which shows there are different inner mechanisms of the synchronism for different regions.

4.2. Analysis for traffic time series

The study engaged in the traffic systems has developed rapidly in recent years. The reasons for the rapid development
can be listed as follows: The first is the current state of mathematical models for relationship between traffic volume
and speed is in a state of flux [50–55], and the models that dominated the discourse are incompatible with the data that
is currently being obtained by advanced intelligent transportation systems (ITS) technologies, the second is the various
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Fig. 11. MJPE results for the stocks markets in the same region: S&P500&DJI, S&P500&NQCI, DJI&NQCI (US), and SZ&HSI, SC&HSI, SZ&SC (China).

Fig. 12. Variance of MJPE for the stocks markets in the same region: S&P500&DJI, S&P500&NQCI, DJI&NQCI (US), and SZ&HSI, SC&HSI, SZ&SC (China).

nonlinear dynamical phenomena, such as the formation of fractal and chaos, are observed [56–64]. A great number of
empirical studies have shown that the traffic system is a typically complex system in terms of system engineering [58,59].
Considerable interest in fields as diverse as mechanics, mathematics, physics, engineering science, and psychology have
been attracted in interdependent behavior and causality in traffic complex systems. In the past few years, there are a
lot of different methods which have been used on the transportation research, including complex network [65], chaotic
analysis method [60] and nonlinear method [61], to investigate the traffic complex system. To detect the synchronism and
intrinsic nature of traffic systemwill bemeaningful and necessary to get a better understanding of the complex traffic system
dynamics and mechanism and lay a solid theoretical basis to establish the advanced intelligent urban traffic management
and control strategy and technology which can further improve traffic conditions efficiently.

People are more concerned about traffic information in metropolises such as Beijing, where the road condition deeply
affects the quality of life of residents and the social economy. Traffic systems have numerous parameters that can be
measured, such as the traffic volume, speed and occupancy. In this paper, we apply MJPE on the traffic speed and volume
time series on lane 1, which are collected from detectors 2036 to 2037 lying on the West 2nd Ring Road (Beijing, China)
over a period of about 11 weeks, from August 11 to October 26, 2012. The detectors record the raw data every 20 s and then
aggregate the raw data into two-minute data for average. Thus, the one-hour recorded traffic time series are about 30 data
points, and the total number of data points for the whole series is about 55 440. It is known that there are two important
patterns: (i) weekday pattern, and (ii) weekend pattern for traffic time series. Fig. 15 show part of speed series on lane 1
recorded by detector 2036 shown for example (upper panel) and one-day series of speed on lane 1 at weekday andweekend
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Fig. 13. MJPE results for the stocks markets between US and China: S&P500&SZ, S&P500&SC, S&P500&HSI, DJI&SZ, DJI&SC, DJI&HSI, NQCI&SZ, NQCI&SC,
NQCI&HSI.

Fig. 14. Variance ofMJPE for the stocksmarkets betweenUS and China: S&P500&SZ, S&P500&SC, S&P500&HSI, DJI&SZ, DJI&SC, DJI&HSI, NQCI&SZ, NQCI&SC,
NQCI&HSI.

separately (lower panel). It can be found from the lower panel of Fig. 15 that the speed series at weekday shows two sudden
drop at rush hours, which represents the periodic pattern of weekday andmay affect the synchronism. Thus, we consider the
differences between the synchronisms for these traffic series on whole weeks, separate weekdays and separate weekends.
Figs. 16, 17 display the MJPE and variance of MJPE for the speed time series and volume time series on lane 1 recorded by
detector 2036 of whole weeks, weekdays and weekends, while MJPE and variance of MJPE for the speed time series on lane
1 recorded by detector 2036 and 2037 of whole weeks, weekdays and weekends are shown in Figs. 18, 19, respectively. For
the MJPE and variance of MJPE of both between speed and volume and the speed time series between adjacent detectors,
the results show no differences at the small scales and become distinct at larger scales suggesting the need for study the
synchronism from the perspective of multiscale. The results also point out that the synchronisms for traffic time series of
weekdays are different from that those ofweekends and the synchronisms forweekday are smaller than those forweekends.
Meanwhile, the synchronisms for traffic time series of whole week are between those of weekdays andweekends, but much
closer to those of weekdays. All of these synchronisms increase with the increase of scale s. MJPE is capable of reflecting the
difference on synchronisms due to weekday patterns and weekend patterns.
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Fig. 15. Part of speed series on lane 1 recorded by detector 2036 shown for example (upper panel) and one-day series of speed on lane 1 at weekday and
weekend separately (lower panel).

Fig. 16. MJPE results for speed time series and volume time series on lane 1 recorded by detector 2036 of whole weeks, weekdays and weekends.

5. Conclusions

In this paper, we introduce the concept of PE to the study between two time series and then combine with the concept
of multiscale. Thus, we propose the multiscale joint permutation entropy (MJPE) to study the synchronism between two
complex time series from the view of ordinal pattern and multiple scales. Before discussing multiscale analysis of practical
time series and its interpretation,we illustrateMJPEmethod to simulated examples: Rossler systemswithout andwith active
control, two component ARFIMA series without and with noise to show the validity of this method. The results for Rossler
systems confirm the fact that using active control achieves the synchronization between Rossler systems and presents the
effectiveness of MJPE. For the ARFIMA time series, their results are consistent with the fact that synchronism and correlation
decrease whenW increases from 0.5 to 1, which means MJPE method is applied to ARFIMA series to detect the synchronism
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Fig. 17. Variance of MJPE for speed time series and volume time series on lane 1 recorded by detector 2036 of whole weeks, weekdays and weekends.

Fig. 18. MJPE results for speed time series on lane 1 recorded by detector 2036 and 2037 of whole weeks, weekdays and weekends.

on multiple scales 1–20 successfully. Meanwhile, the results for the ARFIMA time series with different percentage of noise
also prove the effectiveness of MJPE method and show the sensitiveness of MJPE method to noise. Then we apply the MJPE
method to the complex time series in the real world: financial time series and traffic time series. The conclusion drawn from
the MJPE results for financial time series is consistent with the actual situation that the stock indices from the same region
have larger synchronism and the US stock markets have stronger influence on the stock markets in Hong Kong than Chinese
mainland. Besides, it also shows there is different inner mechanism of the synchronism for different regions. The analysis
of traffic time series indicates the need for study the synchronism from the perspective of multiscale and the differences
between the synchronisms for these traffic series onwholeweeks, separateweekdays and separateweekends. MJPEmethod
can be applied to the complex time series from various fields. In the future, we intend to use MJPE method on the study of
biological time series such as EEG signals, ECG signals. It can be very helpful on exploring the change of synchronism with
age, diseases, sleep stage etc. and further meaningful for the clinical diagnosis.
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Fig. 19. Variance of MJPE for speed time series on lane 1 recorded by detector 2036 and 2037 of whole weeks, weekdays and weekends.
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