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Abstract—Removing noise and other artifacts in the electro-
cardiogram (ECG) is a critical preprocessing step for further
heart disease analysis and diagnosis. In this paper, we propose a
sparse representation based ECG signal denoising and baseline
wandering (BW) correction algorithm. Unlike the traditional
filtering-based methods, like Fourier or Wavelet transform, which
use fixed basis, the proposed algorithm models the ECG signal
as superposition of few inner structures plus additive random
noise, while those structures can be learned from the input
signal or a training set. Using those learned inner structures
and their properties, we can accurately approximate the original
ECG signal and remove noise and other artifacts like baseline
wandering. To demonstrate the robustness and efficacy of the
proposed algorithm, we compare it to several state-of-the-art
algorithms through both simulated and real-life ECG recordings.

Index Terms—sparse representation, adaptive signal separa-
tion, ECG denoising, baseline wandering correction.

I. INTRODUCTION

The electrocardiogram (ECG) is a recording of electrical

cardiac activity and has been widely applied to the diagnosis

of heart disease. As portable devices and electronic medical

records have increased the acquisition of ambulatory ECG

measures, ECG recordings - which are increasingly longer in

duration - are inevitably contaminated by noises and artifacts

including additive random noise, baseline wandering (BW)

caused by motion and muscle artifact along with ambient

electrical fields. Thus, denoising and baseline correction of

noisy ECG recordings is a critical technique for practical

diagnosis and many related algorithms have been proposed in

recent decades.[1], [2]. Traditional filtering approaches were

first introduced to remove these contaminations based on

their different frequency components. Although these kinds

of algorithms can suppress high-frequency noise, they may

also distort spike waveforms in the ECG signals because those

spike waveforms, like the QRS-complex, usually contain a

very wide frequency spectrum.

To overcome drawbacks of standard filtering approaches,

some recent advances in adaptive signal processing have

been introduced[3], [4], [5], [6], [7], [8], [9]. Since the

spike waves in ECG signals are similar to some wavelet

bases, some researchers have applied wavelet transform to

Fig. 1. An example of sparse representation of a segment in ECG recordings.

characterize and locate the waves and have subsequently

used thresholding techniques to remove noise[4], [8]. But

because wavelet transform cannot effectively remove smooth

varying BW, a very narrow low-pass filter was often used

to remove BW after the denoising process. Compared to

fixed bases projection algorithm, like Fourier and Wavelet

transform, Empirical Mode Decomposition (EMD) is a new

totally data-driven signal separation approach that can separate

a given signal into several mono-components, called Intrinsic

Mode Function (IMF). When ECG signal is decomposed by

EMD, high frequency noise, ECG waveforms and BW will

each be variably distributed to different IMFs. By using this

feature, Blanco-Velasco et al. proposed a novel EMD-based

algorithm which is able to remove both high-frequency noise

and BW with small signal distortion[3]. However, because

most QRS complex waveforms cannot be fully confined to a

single defined IMF, they are usually spread to many IMFs and

mixed with noise in the first several IMFs. This phenomenon

is called mode-mixing[10]. Combining the advantages of both

EMD and Wavelet transform, Kabir and Shahnaz proposed

an EMD-Wavelet domain based ECG denoising algorithm[5]

which uses wavelet to improve the denoising result in the first

several IMFs.

However, unlike other biomedical signals, ECG signals have

its own distinct repetitive patterns which are quite different

from random noise and BW. Thus, if we can learn those

patterns from the ECG recordings adaptively, they can be

represented by these learned patterns (or we may call them

inner structures) with great efficiency and effectiveness. To

fulfill this task, the signal sparse and redundant representation

model[11], [12] comes to our mind. In this model, a redundant

dictionary is trained from the input signal or a training set, and
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then, the signal to be analyzed can be sparsely approximated

by the atoms in the trained dictionary. For example, as

illustrated in Figure 1, given a segment of ECG recordings,

we assume that it can be approximated by linear combination

of only few atoms in a well-trained dictionary. The residual

component of this segment can be viewed as additive random

noise. Therefore, our proposed sparse representation based

ECG denoising and BW correction algorithm consists of three

steps: (1) training a redundant dictionary using the input ECG

recording or a training set; (2) using the trained dictionary

to represent the ECG recording sparsely to fulfill the signal

denoising; and (3) using statistical measures to separate the

atoms in the dictionary into two parts; and further, separate

the clean ECG signal and BW from the denoised ECG signal.

Since the atoms in the dictionary are trained from particular

ECG recordings, they can depict the inner structure of ECG

recordings. Furthermore, because the difference between ECG

patterned waves and BW can also be reflected in the trained

atoms, we can remove the BW according to the type of atoms.

The experimental comparisons demonstrate that the results

derived by our proposed algorithm are better than the results

of EMD and Wavelet based thresholding approaches.

The remainder of this paper is organized as follows. In

Section II, we review the fast sparse representation algorithm.

In Section III, we propose our ECG signal denoising and

BW correction algorithm; and in Section IV, we provide

some experiments on simulated and real-life ECG signals

and discuss their results. Finally, section V contains some

concluding remarks.

II. SPARSE REPRESENTATION OF SIGNALS

Signal sparse and redundant representation model provides a

very effective way to describe the inner structures of signals.

For an input signal y ∈ R
n, this model assumes it can be

approximated as y ≈ Dα, where D ∈ R
n×m is a dictionary

matrix and α ∈ R
m is the representation coefficients. Usually,

the dictionary D is assumed to be redundant, that is, m � n;

and the coefficients α is assumed to be sparse, i.e., ‖α‖0 is

very small. The sparsity of α means there are only few non-

zero coefficients in α, which further implies that the input

signal y can be characterized by few atoms (as few columns)

from the dictionary matrix D. These atoms can be viewed as

the description of inner structures of the input signal.

In order to apply this model to practical real-life signals,

learning a dictionary that is suitable for a family of signals

is the key step. And thus, dictionary learning algorithms have

garnered great interest from researchers in the past decade.

Given a set of signal examples, Y = {yi}Ni=1, dictionary

learning algorithms will train a dictionary D which can

sparsify and minimize the approximation error of them. This

problem can be formulated as

D̂ = arg min
D,αi

N∑
i=1

‖yi −Dαi‖22, s.t. ∀i, ‖αi‖0 < k, (1)

where k is the parameter that constrains the maximum number

of atoms can be used to approximate the signal. The above

optimization problem is very complex because both dictionary

and representation coefficients need to be estimated. Most of

the existing approaches for solving this problem, like MOD

and K-SVD, etc., consist of two steps[12], [11], [13]: (1) given

an estimated dictionary, compute the sparse representation

coefficients αi; and (2) using the known representation, update

the dictionary D. This approach will not only provide an

approximate solution but also can be highly time consuming

because of the slow convergence rate resulting from this

alternative optimization style.

To accelerate the solving procedure for the problem repre-

sented in Equation (1), Smith and Elad proposed an improved

dictionary learning algorithm which uses multiple dictionary

updates and coefficients reuse techniques[14]. They formulated

the optimization task as

{D̂, Â} = argmin
D,A

‖Y −DA‖2F , s.t. A�M = 0, (2)

where A = [α1,α2, · · · ,αN ]; � denotes entry-wise (Schur)

multiplication of two equally-sized matrices; and M is a mask

matrix of zeros and ones with M(i, j) = 1 if A(i, j) = 0, and

zeros elsewhere. The requirement A�M = 0 forces all the

zero entries in A to remain intact[14]. This constraint opti-

mization problem can also be solved by a block-coordinate-

descent approach, that is, for a fixing A, D can be updated

by

D̂ = argmin
D

‖Y −DA‖2F = Y AT
(
AAT

)−1
= Y A†,

(3)

and then, followed by an update of each column in A by fixing

D and solving

α̂i = argmin
αi

‖yi −Diαi‖22 = D†
iyi, (4)

where Di is a sub-matrix of D containing only the atoms in

the support of this representation. When all the representation

A is derived, the mask matrix M will be updated according to

the representation A. Although this alternative iteration style

is similar to those used in MOD and K-SVD, it is much faster

because of the constraint mask matrix M . For more detailed

discussions and implementations of this improved dictionary

learning algorithm, readers may refer to the reference [14].

III. BASELINE CORRECTION AND DENOISING OF ECG

SIGNALS

In this section, we intend to discuss the approach for si-

multaneous denoising and baseline correction of ECG signals.

As illustrated in the introduction part, typical ECG signals

contain P-wave, QRS complex and T-wave, which means ECG

signals can be sparsely represented by those inner structures.

Meanwhile, the smooth varying BW can also be represented

by those harmonic atoms, like DCT-bases or Gabor atoms. But

for random noise, to the authors’ knowledge, there exists no

dictionary or bases that are fully depictive or representative.

As a consequence, our ECG signal enhancement algorithm is

comprised of three steps: (1) using the given ECG signals

to generate a training set and then learning a dictionary
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Fig. 2. An ECG recording s00377 from PhysioNet MIMIC II Waveform
Database Matched Subset.

that fits for this signal; (2) using the trained dictionary to

derive a sparse representation of the given ECG signal; and

(3) removing the noise by using the sparse coefficients to

reconstruct the signal; and furthermore, separating the ECG

signal and BW via dividing the atoms in the dictionary into

two subsets according to their statistical characteristics.

A. Dictionary Training of ECG Signals

Since our algorithm is based on signal’s sparse and re-

dundant representation, the input signals will be processed

by an overlapped segment-by-segment style. That is, for an

input signal s(t) with length L, if we define the length of

a segment is l, s(t) will be divided into many segments as

si(t) = [s(i), s(i+1), · · · , s(i+ l−1)] with i = 1, τ+1, 2τ+
1, · · · , L− l+1 where τ < l is denoted as the time shift; and

then, each segment si(t) will be processed or reconstructed

as ŝi(t), successively. Then, the processed or reconstructed

signal ŝ(t) can be calculated via a weighted average of all the

processed segments as

ŝ(t) =
1

n+ 1

n∑
k=0

ŝi+kτ (t−i−kτ), with i < t < i+nτ. (5)

And thus, if the length of segments is chosen as l, the size of

dictionary D should be l ×m with m � l; and the number

of segments in the training set should be much larger than m.

Theoretically, we can randomly select enough number of

segments from some standard ECG signal database to learn

a universal dictionary for processing all input ECG signals.

However, ECG recordings often contain a significant amount

of diversity stemming from differing lead placements, inter-

individual variability and conduction pathologies. For this

reason, there is no single, truly “typical” ECG waves, and thus,

using a standard, universal dictionary to process all variations

of ECG signals will not derive a satisfactory result. Further-

more, because of the improved dictionary algorithm[14] as

described in section II, the time cost for training process

has been sped up greatly and an individual, case-by-case

learning approach becomes feasible. Therefore, in this paper,

for a given ECG signal, we will train a dictionary using its

own waveform as reference. Although ECG signals recorded

from different people may have different wave patterns, wave

patterns in a given ECG signal are similar and much more

representative. Furthermore, for a long term ECG recording,

partitioned segments can be randomly selected to efficiently

train the dictionary rather than using the whole signal. For our
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Fig. 3. Examples of training set and learned dictionary: (a) some examples
of raw signal segments in the training set; (b) some atoms in the dictionary
learned from the training set; (c) some atoms in the separated sub-dictionaries
(as DB and DE ).

proposed dictionary training on a given ECG signal (as shown

in Figure 2), we randomly choose segments with 50 times the

number of atoms in the dictionary to build our training set.

Some of the segment examples can be found in Figure 3(a). We

subsequently use the improved dictionary learning algorithm1

to further train a dictionary via this training set. Figure 3(b)

shows some of the atoms in the trained dictionary of this ECG

recording, from which we find that some of the atoms reveal

distinguishing features of the ECG signal.

B. Synchronous Denoising and Baseline Correction

For a given ECG recording s(t), we assume it contains three

component signals, a clean ECG signal sE(t), BW artifacts

sB(t), and additive random noises. An ECG recording can

thus be modeled as the superposition of these components as

s(t) = sE(t) + sB(t) + noise. (6)

Then, with already trained dictionary D, the input signal

s(t) will be processed segment-by-segment as described in

the above subsection. For a segment signal si = si(t), we

use Orthogonal Matching Pursuit (OMP) algorithm[15] to

compute its sparse representation of dictionary D denoted as

αi. Since the dictionary D is trained from this recording itself,

it can effectively and sparsely represent the ECG signal and

BW while excluding random noises. That is, we can assume

that the reconstructed segment ŝi can keep most of useful

informations in the original segment as

ŝi = Dαi ≈ sEi + sBi . (7)

Meanwhile, because ECG signals usually have sharp peaks

and BW are smooth varying, this significant difference should

also be reflected in the learned dictionary (as shown in Figure

3(b)). So, we compute the kurtosis of each atom dj (denoted as

κ(dj)) in the dictionary D and derive its statistical histogram

1This algorithm is described briefly in section II, and its source codes can be
downloaded from http://www.cs.technion.ac.il/∼elad/Various/ImprovedDL.rar



Fig. 4. Statistical histogram of kurtosis of all the atoms in the learned
dictionary D.

Algorithm 1 ECG Denoising and Baseline Correction Algo-

rithm
1: Input ECG recording s, choose the length l for each

segment, the number of atoms in the dictionary as n, and

a threshold λ.

2: Randomly select 50n of segments from s to build the

training set;

3: Learn a redundant dictionary D ∈ R
l×n from the training

set;

4: Compute kurtosis of each atom dj ∈ D denoted as κ(dj);
5: Divide the dictionary into two sub-dictionary with DE =

{dj ;κ(dj) > λ} and DB = {dj ;κ(dj) ≤ λ};

6: for each segments si in s do
7: Compute its sparse representation coefficient αi with

dictionary D;

8: Separate the coefficients into two parts as αE
i and

αB
i according to the sub-dictionary DE and DB ;

9: Reconstruct the clean ECG and BW segment as ŝEi =
DEαE

i and ŝBi = DBαB
i , respectively;

10: end for
11: return Reconstruct the clean ECG signal ŝE(t) by

weighted average of all the segments ŝEi ;

as shown in Figure 4. Given a threshold parameter λ, the

atoms in D can be clearly divided into two sub-dictionaries,

denoted as DE and DB , with DE = {dj ;κ(dj) > λ} and

DB = {dj ;κ(dj) ≤ λ}. The sub-dictionary DE contains

atoms with sharp peaks and have large kurtosis values; while

the sub-dictionary DB includes smooth varying atoms and

have small kurtosis values. Some atoms in these separated

two sub-dictionaries can be found in Figure 3(c). Furthermore,

with these two sub-dictionaries, we can also divide the sparse

coefficients αi of each segment into two parts, as αE
i and

αB
i . And the estimated ECG signal ŝE(t) can be derived by

weighted average of all these ECG segments ŝEi = DEαE
i .

The overall ECG signal denoising and baseline correction

algorithm can be summarized as in Algorithm 1

Some Implementation Details. In Algorithm 1, the length l
for each signal segment depends on the sampling rate of ECG

recordings. Since a single heart beat containing intact P-wave,

QRS complex and T-wave is usually less than one second, if

the sampling rate is PHz, we set the length of signal segment

to be 0.8P samples in all of our experiments. We set the

number of atoms in the dictionary to be 2P because it should

be larger than the length of segment to ensure that the learned

dictionary is redundant. The other parameter to be considered

is the maximum number of atoms used to reconstruct the signal

which reflects the sparseness of the representation. Through

our own preliminary tests, we have found that this approach

is quite robust for reconstructing noisy ECG signals. For this

reason, we set the maximum number of atoms to be 0.1P .

The last parameter to consider is the threshold λ for dividing

the learned dictionary into two sub-dictionaries. As can be

seen from Figure 4, the value of λ can be estimated from the

statistical histogram. However, due to the risk of the training

process failing to converge towards a satisfactory dictionary,

we use a fixed value (λ = 6) in all the following experiments.

IV. EXPERIMENTAL RESULTS

In this section, we compare our proposed algorithm with

other state-of-the-art ECG denoising algorithms in experi-

ments using real-life and simulated ECG signals. The meth-

ods used for comparison include EMD soft-thresholding

algorithm[3] (denotes EMD for short) and Wavelet threshold-

ing algorithm[8] (denotes DWT for short). The ECG record-

ings used for experiments come from MIMIC II Waveform

Database Matched Subset in PhysioNet [16].

In Real-life ECG experiment 1, we use our algorithm to

denoise and correct baseline of ECG recording in Figure 2.

Since the original ECG recording contains several hours of

data, we only show 5000 samples (approximately 39 seconds)

of this signal in Figure 2, . Some atoms in the trained

dictionary can be found in Figure 3(c). The denoised and

baseline corrected ECG signal and the removed BW are shown

in Figure 5(a) and 5(b), respectively. From which, we can

find that the BW is clearly removed from the original input

ECG signal. To analyze the result in more detail, we zoom

two segments in Figure 5(a), as from samples 1501-2500 and

4001-5000, and plot them in Figure 5(c) and 5(d), respectively.

In each sub-figure, black and red lines denote the input ECG

signal and the denoised result of our proposed algorithm,

respectively. We can observe that our algorithm effectively

isolates and preserve the P-waves, QRS complexes, and T-

waves in the denoised ECG signal, despite the presence of

strong noise and large varying BW in the original signal.

In Real-life ECG experiment 2, we compare the ECG

denoising and baseline correction results derived by our pro-

posed algorithm, EMD algorithm and DWT algorithm. The

input ECG recording is shown in Figure 6(a), from which we

can find that its ECG waves are different from standard ECG

waves. Figures 6(b) to (d) show the results derived from our

algorithm, EMD and DWT approaches, respectively. Because

the input signal has minimal noise, all algorithms tested in

this experiment perform well in denoising and correcting

the baseline. But as made evident by closer investigation of

the plots in Figure 6(e), EMD-based algorithm will generate

obvious over shock adjacent to the QRS complex. This may
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Fig. 5. Denoised and baseline corrected ECG recording in Figure 2. (a)
the denoised and baseline corrected ECG recording; (b) the removed baseline
wander; (c) and (d) the zoomed detailed ECG waves in (a) from samples 1501
to 2500 and 4001 to 5000, respectively. In (c) and (d), the black line and red
line denotes the original ECG recording in Figure 2 and the denoised and
corrected ECG recording in (a), respectively.

TABLE I
SNR IMPROVEMENT AND RMSE OF SIMULATED EXPERIMENTS.

Input
(SNR/RMSE)

Methods SNRimp/RMSE
EMD DWT Proposed

Threshod Threshold Algorithm
10dB / 0.281 7.92 / 0.113 9.04 / 0.098 13.45 / 0.059
15dB / 0.193 9.17 / 0.067 11.13 / 0.052 17.21 / 0.026
20dB / 0.160 11.54 / 0.045 16.49 / 0.036 21.22 / 0.013

arise from the asymmetry of this QRS complex which departs

from the definition of IMF, defined as the mono-component

signal in the EMD algorithm. Furthermore, the DWT-based

algorithm does not effectively remove the BW from the input

signal.

In the last experiment, we use a Simulated ECG Signal
to quantitatively compare the performance of our proposed

algorithm and the other two algorithms. The clean ECG signal

is the recording s00052 in the MIMIC II Matched Subset.

Since the whole ECG recording contains several hours of

data, we selected only 10 clean segments, each with 2000

samples. For each segment, we subsequently added Gaussian

white noise with differing SNR values (generated by MatLab

function awgn) and a baseline wander (generated by cos(2πt)).
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Fig. 6. Denoised and baseline corrected ECG recording s00262 in MIMIC
II Matched Subset. (a) the input ECG recording with 3000 samples; (b),
(c), and (d) the denoised and baseline corrected ECG signals derived by
our proposed algorithm, EMD soft thresholding algorithm[3] and Wavelet
thresholding algorithm[8], respectively; (e) the zoomed details of derived ECG
waves from samples 1301 to 1700. The black, red, green, and blue lines denote
the original ECG recording, the result of our proposed algorithm, the Wavelet
thresholding algorithm and EMD thresholding algorithm, respectively.

We then used different algorithms to remove BW and noise

from each simulated signals to derive the output signal. Finally,

we compare the mean performance of these 10 signals based

on two metrics: improvement in signal-to-noise-rate (SNRimp)

and the Root of Mean Square Error (RMSE), defined as:

SNRimp = 10 log10

∑n
i=1(y[i]− x[i])2∑n
i=1(x̂[i]− x[i])2

, (8)

RMSE =

√
1

n

∑n

i=1
(x̂[i]− x[i])2. (9)

As in Equation (8) and (9), the higher SNRimp value and lower

RMSE value represent better results.

In simulated signals, the Signal-to-Noise Ration (SNR)

parameters in the MatLab function awgn were set to SNR

values of 10dB, 15dB, and 20dB. Table I presents the com-

parison of these two metrics between our proposed algorithm,

EMD-based algorithm and DWT-based algorithm for the same

group of simulated ECG signals. The results indicate that our
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Fig. 7. Simulated denoising and baseline correction experiment. (a) The
simulated noisy and baseline wandering signal with SNR = 15dB. (b) The
denoised and baseline corrected signal derived by our proposed algorithm. (c)
The detailed comparison between noisy signal (in black line), real clean signal
(in red line) and the denoised signal derived by our approach (in blue line).
(d) The detailed comparison between real clean signal (in red line), results of
EMD thresholding (in green line) and DWT thresholding (in blue line).

algorithm outperforms the other two algorithms. We illustrate

a sample simulated noisy signal (with SNR = 15dB) in Figure

7(a), while Figure 7(b) reveals the denoised and baseline

corrected result derived by our proposed algorithm. In Figure

7(c) and (d), detailed comparisons between the real clean

signal, our result and the results of EMD and DWT algorithms

can be found. The details can clearly reflect that our derived

denoised signal more closely resemble the original clean signal

compared to the signals derived by the other two algorithms.

V. CONCLUSION AND DISCUSSION

In this paper, a sparse representation based ECG signal de-

noising and baseline correction approach is presented. Signal

sparse and redundant representation is a recent new signal

processing method which can effectively learn the inner struc-

ture from noisy input signals. Moreover, the characteristics

P-, T- waves and QRS complexes in the ECG recordings and

smooth varying baseline wandering are revealed in the learned

dictionaries. We use the learned dictionary to denoise and

effectively reconstruct the ECG signal using selected atoms

in the dictionary and remove the baseline wandering. Also,

the real-life and simulated experimental recordings demon-

strate that our approach can effectively remove the noisy and

baseline wandering in the ECG signals while maintaining

the intrinsic ECG waves. Since our proposed algorithm is

nearly parameter-free , it is likely amenable to automized

ECG analysis systems. The general implementation of this

algorithm to such systems and to clinical situations (with

varying pathologies) warrants further study.
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