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Abstract
Electrocardiogram (ECG) signal enhancement and QRS complex detection is 
a critical preprocessing step for further heart disease analysis and diagnosis. In 
this paper, we propose a sparse representation-based ECG signal enhancement 
and QRS complex detection algorithm. Unlike traditional Fourier or wavelet 
transform-based methods, which use fixed bases, the proposed algorithm 
models the ECG signal as the superposition of a few inner structures plus 
additive random noise, where these structures (referred to here as atoms) 
can be learned from the input signal or a training set. Using these atoms and 
their properties, we can accurately approximate the original ECG signal and 
remove the noise and other artifacts such as baseline wandering. Additionally, 
some of the atoms with larger kurtosis values can be modified and used as an 
indication function to detect and locate the QRS complexes in the enhanced 
ECG signals. To demonstrate the robustness and efficacy of the proposed 
algorithm, we compare it with several state-of-the-art ECG enhancement and 
QRS detection algorithms using both simulated and real-life ECG recordings.

Keywords: ECG enhancement, QRS complex detection,  
sparse representation, dictionary learning

(Some figures may appear in colour only in the online journal)

Y Zhou et al

Sparse representation-based ECG signal enhancement and QRS detection

Printed in the UK

2093

PMEAE3

© 2016 Institute of Physics and Engineering in Medicine

37

Physiol. Meas.

PMEA

0967-3334

10.1088/0967-3334/37/12/2093

Paper

12

2093

2110

Physiological Measurement

Institute of Physics and Engineering in Medicine

IOP

2016

4 Author to whom all correspondence should be addressed.

0967-3334/16/122093+18$33.00 © 2016 Institute of Physics and Engineering in Medicine Printed in the UK

Physiol. Meas. 37 (2016) 2093–2110 doi:10.1088/0967-3334/37/12/2093

mailto:wingegg_313@126.com
mailto:xiyuan.hu@ia.ac.cn
mailto:aahn1@mgh.harvard.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/0967-3334/37/12/2093&domain=pdf&date_stamp=2016-11-04
publisher-id
doi
http://dx.doi.org/10.1088/0967-3334/37/12/2093


2094

1. Introduction

The electrocardiogram (ECG) is a recording of electrical cardiac activity and is commonly 
used to evaluate the health of the human heart. As portable devices and electronic medical 
records have increased the acquisition of ambulatory ECG measures, ECG recordings—
which are increasingly longer in duration—are inevitably contaminated by noises and artifacts 
including additive random noise, baseline wandering (BW) caused by motion and muscle 
artifact along with ambient electrical fields. Therefore, enhancement of the ECG signal, usu-
ally as a preprocessing step, will not only ease the clinical evaluation of ECG waveforms but 
will also assist in improving the overall accuracy of automatic QRS complex detection (Pal 
and Mitra 2012, Ning and Selesnick 2013, Akhbari et al 2016). Additionally, the accuracy of 
the beat-to-beat (RR) intervals extracted from ECG recordings is crucial for reliable heart rate 
variability (HRV) analysis.

For ECG signal denoising and baseline correction, traditional filtering-based approaches 
were initially used to remove these signal contaminations based on their frequency responses 
(Addison 2005). Although these types of algorithms can suppress high-frequency noise, they 
may also distort the spike waveforms in the ECG signals because these spike waveforms, like 
the QRS complex, usually have a very wide frequency spectrum. To overcome the drawbacks 
of the filtering-based approaches, some recent advances in adaptive signal processing tech-
niques have been introduced (Blanco-Velasco et al 2008, Kabir and Shahnaz 2012, Tracey and 
Miller 2012, Yi et al 2013, Abdelmounim et al 2014, Zhou et al 2015). For example, because 
the spike waves found in ECG signals are similar to some wavelet bases, Abdelmounim et al 
proposed a wavelet-based thresholding algorithm that used wavelet transforms to characterize 
and locate these waves and subsequently used thresholding techniques to remove the noise 
(Abdelmounim et  al 2014). Because wavelet transform cannot remove smoothly-varying 
baseline wandering effectively, the authors used a very narrow low-pass filter to remove the 
baseline wandering after the denoising process. In addition to the fixed basis projection algo-
rithms, such as Fourier and Wavelet transform-based algorithms, empirical mode decompo-
sition (EMD) has also been introduced to ECG signal processing. When the ECG signal is 
decomposed by EMD, the high-frequency noise, the ECG waveforms and the baseline will 
each be variably distributed to different intrinsic mode functions (IMFs). Using this feature, 
Blanco-Velasco et al proposed a novel EMD-based algorithm that can remove both the high-
frequency noise and the baseline wandering with only small signal distortion (Blanco-Velasco 
et al 2008). Also, Pal and Mitra applied EMD to remove both baseline wandering and noise 
from ECG signals, and furthermore, improved QRS detection using the features of the IMFs 
(Pal and Mitra 2012). However, because of the mode-mixing phenomenon (Hu et al 2012) in 
the EMD, most QRS complexes cannot be fully confined to a single IMF; they are usually 
spread to multiple IMFs and mixed with the noise in the first few IMFs. By combining the 
advantages of EMD and wavelet transforms, Kabir and Shahnaz proposed an EMD-wavelet 
domain-based ECG denoising algorithm (Kabir and Shahnaz 2012) that uses wavelets to 
improve the denoising results in these first few IMFs.

After ECG signal preprocessing is complete, the next step is automatic QRS complex detec-
tion, which has been studied for more than 30 years. Because of the unique wave pattern of the 
QRS complex, the template matching-based algorithm was first introduced to detect the QRS 
complex by calculating the correlation between the template and the detected signals (Dobbs 
et al 1984, Chan et al 2006). This type of approach, however, is as heavily dependent on prior 
knowledge as it is on the selection of suitable templates. Therefore, some signal features, e.g. 
the slope of the R-wave, have been used rather than the template waves to detect and locate 
the QRS complex. These algorithms generally need to compute the derivatives of the ECG 
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signals (Arzeno et al 2008, Ning and Selesnick 2013). Because high-frequency noise will also 
be amplified by these derivatives, their accuracy and sensitivity will be reliant on the denois-
ing results from the pre-processing steps. As many recent signal decomposition algorithms, 
e.g. EMD, wavelet-based algorithms, and time-frequency analysis (TFA), have been applied 
to ECG signal enhancement, these previously proposed QRS detection algorithms can also be 
applied to the extracted intrinsic mode function (Pal and Mitra 2012), the wavelet coefficients 
(Zidelmal et al 2012, Bouaziz et al 2014) or the Shannon energy in TFA (Zhu and Dong 2013, 
Zidelmal et al 2014) to improve the QRS detection accuracy. However, the main drawback of 
this type of approach is its sensitivity to the selection of suitable subcomponents or wavelet 
basis functions, which in turn affects the QRS detection efficiency. Recently, some machine 
learning-based approaches, e.g. artificial neural network (ANN), have also been applied to the 
field of QRS complex detection (Arbateni and Bennia 2014). Besides the QRS detection algo-
rithm that only use ECG signals, some heart beat detection algorithms that adopt multimodal 
measurement have also been introduced (Johnson et al 2015).

Although the QRS complex vary in morphology due to different lead placements and inter-
individual variability, it possesses repetitive (not periodic) patterns that are still quite distinct 
from random noise and baseline wandering. Therefore, if these patterns can be learned adap-
tively from a given ECG recording, the QRS complex can be represented by these learned 
patterns (which we call inner structures) with great efficiency and effectiveness. To address 
this task, the signal’s sparse and redundant representation model (Aharon et al 2006, Tosic and 
Frossard 2011) comes to mind. In this model, a redundant dictionary is trained using either the 
input signal or a training set, and the signal to be analyzed can then be sparsely approximated 
using the atoms in the trained dictionary. For example, as shown in figure 1, when given a seg-
ment of an ECG recording, we assume that this segment can be approximated using a linear 
combination of only few atoms in a well-trained dictionary. The residual component of this 
segment can then be viewed as additive random noise.

Because the atoms in the dictionary are trained from the actual ECG recordings of interest, 
they can depict the inner structures of these specific ECG recordings. If we further analyze the 
atoms in the dictionary using certain statistical measures, we can then select suitable atoms, 
use them to reconstruct clean ECG signals, and remove both noise and baseline wandering. 
Furthermore, we can modify these selected atoms by only retaining the peak point of each, and 
these modified atoms can then be viewed as impulse functions and can be used to locate the 
QRS complex. Therefore, our proposed sparse representation-based ECG enhancement and 
QRS detection algorithm consists of three steps: (1) training of a redundant dictionary using 
the input ECG recording; (2) separation of the atoms in the dictionary into two parts based 
on their kurtosis, followed by reconstruction of the clean ECG signal using those atoms with 
high kurtosis values; and (3) modification of those selected atoms before using them to locate 

Figure 1. Example of sparse representation of a segment of an ECG recording.
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the QRS complex. Experimental comparisons are used to evaluate the performance of our 
proposed algorithm for ECG signal enhancement and QRS detection under noisy conditions.

The remainder of this paper is organized as follows. In section 2, we review the fast sparse 
representation algorithm. In section 3, we present our ECG signal denoising and baseline cor-
rection algorithm, and in section 4, our QRS complex detection algorithm is proposed. Then, 
we perform experiments using simulated and real-life ECG signals and discuss the results in 
section 5. Finally, section 6 contains our concluding remarks.

2. Sparse representation of signals

Given an input signal y nR∈ , the sparse representation model assumes that this signal can be 
approximated as y Dα≈ , where D n mR∈ ×  is a dictionary matrix and mRα∈  gives the repre-
sentation coefficients. Because each column of the dictionary matrix D is called an atom, the 
approximation of the input signal can be viewed as a weighted summation of these atoms and 
their weights (as given by the coefficients in α). Usually, the dictionary D is assumed to be 
redundant, which means that the number of atoms in the dictionary should be much greater 
than the length of the input signals; and the coefficients α are assumed to be sparse, which 
means there are only few non-zero weights (coefficients) in α, i.e. 0∥ ∥α  is very small. This 
then implies that the input signal y can be approximated using only few atoms (with corre-
sponding weights that are not equal to zero) from the dictionary matrix D. Therefore, these 
atoms can be viewed as a description of the inner structures of the input signal.

The most important step to enable application of this model to practical real-life signals 
is to learn a dictionary that is suitable for a family of signals. Given a set of example signals, 
Y yi i

N
1{ }= = , dictionary learning algorithms try to train a dictionary D that can sparsify and 

minimize the approximation error of these signals. This problem can be formulated as

D y D i karg min , s.t. , ,
D i

N

i i i
, 1

2
2

0
i

ˆ   ∥ ∥     ∥ ∥∑ α α= − ∀ <
α =

 (1)

where k is the parameter that constrains the maximum number of atoms that can be used to 
approximate the signal. The optimization problem above is very complex, because both the 
dictionary and the representation coefficients need to be estimated. Most existing approaches 
to solving this problem, like MOD and K-SVD algorithm, etc, consist of two steps (Aharon 
et al 2006, Engan et al 2007, Tosic and Frossard 2011): (1) given an estimated dictionary, 
compute sparse representation coefficients iα ; and (2) using the known representation, update 
dictionary D. This approach will provide an approximate solution but can be highly time-
consuming because of the slow convergence rate that results from this alternative optimization 
style.

To accelerate the solving procedure for the problem presented in equation  (1), Smith 
and Elad proposed an improved dictionary learning algorithm that uses multiple dictionary 
updates and coefficient reuse techniques (Smith and Elad 2013). They then formulated the 
optimization task as

D A Y DA A M, arg min , s.t. 0,
D A

F
,

2{ ˆ ˆ } ∥ ∥    = − =� (2)

where A , , , N1 2[ ]α α α= � ; � denotes the entry-wise (Schur) multiplication of two equally-
sized matrices; and M is a mask matrix of zeros and ones with M(i, j)  =  1 if A(i, j)  =  0, and 
zeros elsewhere. The requirement A M 0=�  then forces all zero entries in A to remain intact 
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(Smith and Elad 2013). This constraint optimization problem can also be solved using a block-
coordinate-descent approach, i.e. for a fixed A, D can be updated using

D Y DA YA AA YAarg min ,
D

F
T T2 1= − = =−ˆ   ∥ ∥ ( ) †

 (3)

and is then followed by an update of each column in A by fixing D and solving

α α= − =
α

  ∥ ∥ †y D D yˆ arg min ,i i i i i i2
2

i
 (4)

where Di is a sub-matrix of D that contains only the atoms that support this representation. 
When the complete representation A is derived, the mask matrix M will then be updated 
based on A. While this alternative iteration style is similar to the styles used in both MOD and 
K-SVD, it is much faster because of the use of the constraint mask matrix M. More detailed 
discussions and implementations of this improved dictionary learning algorithm can be found 
in the (Smith and Elad 2013).

3. ECG signal denoising and baseline correction

In this section, we discuss the sparse representation-based ECG signal enhancement algo-
rithm, including the ECG signal denoising and baseline correction aspects. Because typical 
ECG signals contain the P-wave, the QRS complex and the T-wave, they can be represented 
sparsely by the inner structures (or atoms). However, to the best of the authors’ knowledge, 
there are no dictionaries or bases that are fully depictive or representative of random noise. 
While smoothly-varying baseline wandering can also be represented using some harmonic 
atoms, similar to DCT-bases, their kurtoses are always much smaller than the kurtosis of typi-
cal ECG waves. Consequently, our ECG signal enhancement algorithm comprises three steps: 
(1) using the given ECG signals to generate a training set and then learning a suitable diction-
ary that fits this signal; (2) using the trained dictionary to derive a sparse representation of the 
ECG signal provided; and (3) computation of the kurtosis of each atom in the dictionary and 
reconstructing the clean ECG signal using the atoms with large kurtosis values.

3.1. Dictionary training of ECG signals

Because our algorithm is based on the sparse and redundant representation of the signal, the 
input signals will be processed using an overlapped segment-by-segment style. This means 
that for an input signal s(t) of length L, if we define the length of a segment to be l, then 
s(t) will be divided into multiple segments as s t s i s i s i l, 1 , , 1i( ) [ ( ) ( ) ( )]= + + −�  with 
i L l1, 1, 2 1, , 1τ τ= + + − +� , where lτ<  denotes the time shift; then, each segment si(t) 
will be processed or reconstructed successively as s tî( ). Then, the processed or reconstructed 
signal s tˆ( ) can be calculated using a weighted average of all the processed segments as

s t
n

s t i k i t i n
1

1
, with .

k

n

i k
0

ˆ( ) ˆ ( )    ∑ τ τ=
+

− − < < +τ
=

+ (5)

Thus, if the segment length is chosen to be l, the size of dictionary D should be l m×  with 
m l� ; and the number of segments contained in the training set should be much larger than m.

Theoretically, we can randomly select sufficient segments from a standard ECG signal 
database as a universal training set and then learn a universal dictionary for processing of 
all input ECG signals across patients. However, ECG recordings often contain a significant 
amount of diversity, which stems from differing lead placements, inter-individual variabilities 
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and conduction pathologies. This indicates that, given a specific ECG signal, this over- 
generalized dictionary may not achieve the best representation (or approximation) capacity  
for those specific waveforms of interest. Therefore, in this paper, we use an individual ECG 
signal to construct the training set and then learn a dictionary that fits for itself using an 
improved dictionary learning algorithm (Smith and Elad 2013) described in section  2. In 
this way, the learned dictionary is both parsimonious to the individual ECG and efficient in 
sparsely representing the data. Moreover, due to the improved dictionary algorithm, the time 
required for the training process has been greatly reduced, and an individual, case-by-case 
learning approach becomes computationally and practically feasible. Therefore, in this paper, 
we will train a dictionary for a given ECG signal by using its own waveform as a reference.

Although ECG signals that are recorded from different people may have different wave pat-
terns, the wave patterns within an individual ECG lead are repetitive, and a specific waveform 
can be highly representative of the waveforms seen in the whole time-series of that particular 
lead. Furthermore, partitioned segments can be randomly selected from a long-term ECG 
recording to train the dictionary efficiently, rather than use the entire signal. For our proposed 
dictionary training process based on a given ECG signal (as shown in figure 4(a)), we ran-
domly select segments containing 50 times the number of atoms in the dictionary to construct 
our training set. Some of the segment examples are shown in figure 2(a). We subsequently 
use the improved dictionary learning algorithm5 to train a dictionary using this training set. 
Figure 2(b) shows some of the atoms in the trained dictionary from this ECG recording, from 
which we see that some of these atoms reveal distinguishing ECG signal features. Of note, our 
training algorithm does not employ a shift-invariant dictionary as proposed by Mailhé et al 
(2008). As can be seen in figure 2(b), the atoms in the dictionary may have similar waveforms 
but are shifted in time relative to each other. Attempts at using a time-invariant dictionary were 
encountered with exceedingly slow processing since the algorithm required determination of 

Figure 2. Examples of training set and learned dictionary: (a) examples of raw signal 
segments used in the training set; (b) some atoms selected from the dictionary that 
were learned from the training set; (c) selected atoms from the separate sub-dictionaries 
(denoted by DB and DE). Noted that the atoms labeled in (b) correspond to the atoms 
labeled in (c).

5 This algorithm is described briefly in section 2, and its source codes can be downloaded from www.cs.technion.
ac.il/˜elad/Various/ImprovedDL.rar.
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not only the most suitable atoms but also the optimal shifting parameter in the reconstructing 
process.

3.2. Synchronous denoising and baseline correction

For a given ECG recording s(t), we assume that this recording contains three component sig-
nals: a clean ECG signal sE(t), baseline wandering artifacts sB(t), and additive random noise. 
The ECG recording can thus be modeled as the superposition of these components in the form

s t s t s t noise.E B( ) ( ) ( )= + + (6)

Then, using the already trained dictionary D, the input signal s(t) can be processed on a seg-
ment-by-segment basis. For a signal segment s s ti i( )= , we use the orthogonal matching pur-
suit (OMP) algorithm (Pati et al 1993) to compute its sparse representation from dictionary 
D, which is denoted by iα . Because the dictionary D is trained based on this recording itself, 
it can effectively and sparsely represent the ECG signal and the baseline while excluding the 
random noise. This means that we can assume that the reconstructed segment sî retains most 
of the useful information contained in the original segment in the form

s D s s .i i i
E

i
Bˆ α= ≈ + (7)

Additionally, because the ECG signals usually have sharp peaks and smoothly-varying 
baselines, this significant difference should also be reflected in the learned dictionary (as 
shown in figure 2(b)). Therefore, we compute the kurtosis of each atom dj in the dictionary 
D as

d
d d

d

E d i

d i
,j

j N i
N

j j

N i
N

j j

4

4

1
1

4

1
1

2 2( )
( )

( ) ( ( ) ¯ )

( ( ) ¯ )
κ

µ
σ

=
−

=
∑ −

∑ −

=

=

 (8)

where N denotes the length of dj. For smooth varying signals (like baseline wandering), most 
values do not deviate far from the mean value of the signal. As a consequence, according to 
equation (8), their kurtosis are nearly uniformly small. On the other hand, for shock signals 
(like the QRS complex), although most values lie close to the mean, there are few data points 
with very large bias values. This yields a large fourth central moment (numerator) and a rela-
tively small standard deviation (denominator) which collectively lead to large kurtosis values. 
Figure  3 shows a statistical histogram of dj( )κ  of a dictionary D. Then, given a threshold 
parameter λ, the atoms in D can be clearly divided into two sub-dictionaries, denoted by DE 
and DB, with D d d;E

j j{ ( ) }κ λ= >  and D d d;B
j j{ ( ) ⩽ }κ λ= . The sub-dictionary DE contains 

the atoms that have sharp peaks and large kurtosis values; in contrast, the sub-dictionary DB 
includes smoothly-varying atoms that have small kurtosis values. Some of the atoms from 
these two separate sub-dictionaries can be found in figure 2(c). Also, if we use i

Eα  to denote 
the coefficients in α that correspond to the atoms in the sub-dictionary DE, the clean esti-
mated ECG signal s tEˆ ( ) can be derived based on the weighted average of all these ECG seg-
ments s Di

E E
i
Eˆ α= . The overall ECG signal denoising and baseline correction algorithm can 

thus be summarized as shown in algorithm 1. Also, given an input ECG signal (as shown in 
 figure 4(a)), the resulting enhanced ECG signal and the removed baseline that is derived using 
this algorithm can be found in figure 4(b), and are represented by the black and red lines, 
respectively.
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3.2.1. Some implementation details. In algorithm 1, the length l of each signal segment 
depends on the sampling rate of the ECG recording. If the sampling rate is PHz, we set the 
signal segment length to be 0.8P samples in all of our experiments. We set the number of 
atoms in the dictionary to be 2P because it should be greater than the segment length to ensure 
that the learned dictionary is redundant. After the length l has been decided, the parameter τ 
in equation (5) can be determined. In practice, a smaller τ generates better results but has the 
undesired side-effect of increased algorithm’s computational time. In all experiments in this 
paper, we designated l0.05τ = . The other parameter that must be considered is the maximum 
number of atoms used for signal reconstruction, which reflects the sparseness of the represen-
tation. Based on our own preliminary tests, this approach is quite robust for reconstruction of 
noisy ECG signals. For this reason, we set the maximum number of atoms to be 0.1P. The 
last parameter to be considered is the threshold λ. In most cases, it can be estimated from the 
statistical histogram as shown in figure 3. However, there still remains the risk that the train-
ing process fails to converge towards a satisfactory dictionary, and in such cases, the estima-
tion of λ may be incorrect. As a result, in all the experiments discussed later in this paper, λ 
was empirically chosen to be a value of 6 based on prior experimentations (figure 3 is a case 
example) and on the recognition that kurtosis of standard Gaussian distribution is 3 and that 
shock signals are nearly always much sharper than Gaussian function.

Figure 3. Statistical histogram of the kurtosis of all atoms in learned dictionary D.

Algorithm 1. ECG enhancement algorithm.

  1:  Input ECG recording s, choose the length l for each segment, the number of atoms in the dictionary 
n, and a threshold λ.

  2: Randomly select 50n of segments from s to build the training set;

  3: Learn the redundant dictionary D l mR∈ ×  from the training set;
  4: Compute the kurtosis of each atom d Dj ∈ , which is denoted as dj( )κ ;

  5: Divide the dictionary into two sub-dictionaries with D d d;E
j j{ ( ) }κ λ= >  and D d d;B

j j{ ( ) ⩽ }κ λ= ;
  6: for each segment si in s do
  7:    Compute its sparse representation coefficient iα  using dictionary D;

  8:    Only retain the coefficients related to the sub-dictionary DE as i
Eα ;

  9:    Reconstruct the clean ECG segment as s Di
E E

i
Eˆ α= ;

10: end for

11: return Reconstruct the clean ECG signal s tEˆ ( ) using the weighted average of all segments si
Eˆ ;

Y Zhou et alPhysiol. Meas. 37 (2016) 2093
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4. QRS complex detection

Because the QRS complex is generated by ventricular depolarization, it consists in most ECG 
signals of a very sharp peak R-wave and two other waves with smaller amplitudes, called the 
Q-wave and the S-wave. As shown in section 3, the distinctive features of the QRS complex 
can be characterized effectively using the atoms in the sub-dictionary DE. Therefore, these 
atoms can not only be used to reconstruct a clean ECG signal but can also locate the QRS 
complex with some modifications. The steps required to detect the QRS complex using these 
atoms are described below.

First, for each atom dj in the sub-dictionary DE, we only retain the point with the largest 
absolute value in dj and set all other points to zero. That is, if we denote the modified atom of 
dj as dj

˜ , we have

d
d i

d i d i

i l

, if max

0, otherwise 1, 2, ,
j

j j j˜ ( ) ( )   ( ) ( )
 

⎧
⎨
⎩

=
| | | |= | |

= �
 (9)

Here, we use the maximum of the absolute value rather than the maximum value because the 
QRS at different lead placements will not always have a positive value. Some examples of this 
modification can be seen in sub-dictionary DE in figure 2(c), where the black and red lines 
denote the original trained atoms d and the modified atoms d̃, respectively.

We also use these modified atoms dj
˜  and their corresponding coefficients Eα  to reconstruct 

the QRS peak information signal s pk˜ , as shown in figure 4(c). (Figure 4(b) shows the enhanced 
ECG signal that was derived using the original atoms dj and their coefficients Eα .) Then, we 
detect all the local extremum points in this information signal s pk˜  with values that are larger 
than a small threshold s0.05 max pk( ˜ )η = | |  and mark these points as the QRS candidate loca-
tions, as indicated by the red dots in figure 4(c).

Figure 4. ECG enhancement and QRS complex detection. (a) ECG recording s00377 
from PhysioNet MIMIC II waveform database matched subset; (b) denoised ECG 
signal and removed baseline; (c) reconstructed QRS peak information signal, local 
maxima points (denoted by red dots) and detected QRS complex locations (denoted by 
green circles).
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Although most of the noise and the baseline wandering can be removed in the pre- 
processing step, a little noise may still remain in the enhanced ECG signal. The remaining 
noise will also lead to local extremum points and will thus be detected. Therefore, as a final 
step, we use a sliding window to remove those extrema that were derived from noise. In the 
window, we compute the absolute values of all extrema. If the value of the largest extremum 
is three times larger than the value of the second largest extremum, then the largest extremum 
will be preserved; otherwise, all extrema in the window are removed from the candidate set. 
As shown in figure 4(c), the green circles represent the final detected QRS complex, and their 
locations in the original input signal are marked using red dots in figure 4(a). The complete 
QRS complex detection algorithm is summarized as shown in algorithm 2.

5. Experimental results and discussion

In this section, we evaluate the performance of our proposed algorithm in terms of the follow-
ing two aspects: (1) ECG signal enhancement, and (2) QRS complex detection.

5.1. ECG enhancement experiments

For the ECG signal denoising and baseline correction aspect, figure 4 shows an example of 
a real-life ECG recording enhancement that was derived using our algorithm 1. Because the 
original ECG recording contains several hours of data, we only show 5000 samples (approxi-
mately 39 s) of this signal in figure 4(a). The denoised and baseline corrected ECG signal and 
the removed baseline are shown in figure 4(b) as black and red lines, respectively. From this, 
we see that the baseline has clearly been removed from the original input ECG signal.

Algorithm 2. QRS complex detection algorithm.

  1:  Input the trained sub-dictionary DE and the coefficients of each segment as i
Eα  derived from 

algorithm 1;

  2: Modify all atoms in DE using equation (9) and derive the modified sub-dictionary DE˜ ;
  3: for each segment si do

  4:    Compute the QRS peak information segment as s Di
pk E

i
E˜ ˜ α= ;

  5: end for

  6: Reconstruct the QRS peak information signal s pk˜  using the weighted average of all segments si
pk˜ ;

  7: Detect all local extremum points with absolute value larger than s0.05 max pk( ˜ )| | ;
  8: for each local extremum location j do

  9:   Select a neighborhood window s s j s j,j
pk pk pk˜ [ ˜ ( )   ˜ ( )]= −∆ +∆ ;

10:   Compute the largest and second largest values of s j
pk˜| | as m1 and m2, respectively;

11:   if s j mpk
1˜ ( )≠  or m m31 2⩽ ,

12:   Then remove this local extremum location;
13:   end if
14: end for
15: return All remaining extremum locations.

Remarks. In step 11, the factor 3 is an empirical value obtained after trial and error with our 
algorithm to various databases. In situations where the sliding window does not contain a real QRS 
complex or where noise is retained in the reconstructed signal, we require a secondary test to assess 
whether the maximum point is significantly different from other local maximum points. For noisier 
datasets, factor 3 may lead to missed detections of QRS complex, and the value of this factor may 
be set at a smaller value.
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To evaluate our algorithm in more detail, we compare our algorithm with two other state-
of-the-art ECG denoising algorithms, the EMD soft-thresholding algorithm (Blanco-Velasco 
et al 2008) (denoted by EMD-ST) and the wavelet thresholding algorithm (Abdelmounim et al 
2014) (denoted by DWT-T), using another real-life ECG recording. As shown in  figure 5(a), 
the input ECG waves differ from standard ECG waves. Figures  5(b)–(d) show the results 
derived using our algorithm and the EMD-ST and DWT-T approaches, respectively. Because 
the input signal does not contain strong noise, all tested algorithms perform well in terms of 
denoising and correction of the baseline. However, if we look closely at figure 5(c), we can find 
that, during each beat, between QRS-complex and T-wave, EMD-ST algorithm will generate 
a small over-shock, which is more evident by closer investigation of the plots in figure 5(e). 
This may arise from the asymmetry of this specific QRS complex, which departs from the 
IMF definition, where it is defined as the mono-component signal in the EMD algorithm. In 
figure 5(d), we can find that the DWT-T algorithm can also preserve the QRS-complex well, 
but it does not remove the baseline wandering completely.

Finally, we use a simulated ECG signal for quantitative comparison of the performance 
of our proposed algorithm with that of the other two algorithms. The clean ECG signal is the 
recording s00052 from the MIMIC II Matched Subset. We selected 10 clean segments from 

Figure 5. Denoised and baseline-corrected ECG recording s00262 in MIMIC II 
Matched Subset. (a) Input ECG recording with 3000 samples; (b)–(d) show the 
denoised and baseline-corrected ECG signals derived using our proposed algorithm 1, 
the EMD-ST algorithm and the DWT-T algorithm, respectively; (e) magnified details 
of the ECG waves derived from samples 1301 to 1700. The black, red, green, and blue 
lines denote the original ECG recording, and the results from our algorithm, the DWT-T 
algorithm and the EMD-ST algorithm, respectively. The arrows in (c) are pointing to 
the over-shock generated by the EMD-ST algorithm.
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the signal, with each containing 2000 samples. For each segment, we subsequently added 
Gaussian white noise with various signal-to-noise ratio (SNR) values (generated using the 
MatLab function awgn with values of 10 dB, 15 dB and 20 dB) and a baseline wander (gen-
erated using tcos 2( )π ). We then used different algorithms to remove the baseline wandering 
and the noise from each of the simulated signals. After that, we then compared the mean 
performances of these 10 signals based on two metrics: improvement in the SNR (denoted by 
SNRimp) and the root-mean-square error (RMSE), which are defined as:

y i x i

x i x i
SNR 10 log ,i

n

i
nimp 10

1
2

1
2

( [ ] [ ])
( ˆ[ ] [ ])

=
∑ −

∑ −
=

=
 (10)

n
x i x iRMSE

1
.

i

n

1
2( ˆ[ ] [ ])∑= −

= (11)

As shown in equations (10) and (11), a higher SNRimp value and a lower RMSE value repre-
sent better results.

Table 1 presents a comparison of these two metrics when applying our proposed algo-
rithm, the EMD-ST algorithm and the DWT-T algorithm to the same group of simulated 
ECG signals. The results show that our algorithm outperforms the other two algorithms. As 
an illustration, we show a sample simulated noisy signal (with SNR 15 dB = ) in figure 6(a), 
while figure 6(b) shows the denoised and baseline corrected result derived using our proposed 
algorithm. In figures 6(c) and (d), detailed comparisons can be found among the real clean 
signal, our result and the results when using the EMD-ST and DWT-T algorithms. The details 
clearly show that our derived denoised signal resembles the original clean signal more closely 
than either of the signals derived using the other two algorithms.

5.2. QRS complex detection experiments6

After ECG signal enhancement, we can use the sparse representation coefficients and the modi-
fied atoms to perform the QRS complex detection. Figures 4(a), 5(a) and 6(a) show the QRS 
complex detection results for the three examples in the MIMIC II database that were derived 
by our proposed algorithm 2. Because our ECG enhancement algorithm can remove most of 
the noise and baseline wandering, the QRS complex detection in these examples is effective.

For further evaluation of the QRS complex detection performance of our algorithm, we use 
the MIT-BIH database (Goldberger et al 2000) to test our algorithm and the other QRS com-
plex detection approaches. We compare the performances of the different approaches based 
on three metrics: sensitivity, precision, and detection error. These metrics are calculated using

Table 1. SNR improvement and root-mean-square error (RMSE) of simulated 
experiments.

Methods / Input  
(SNR/RMSE)

SNRimp/RMSE

EMD threshold DWT threshold
Proposed 
algorithm

10 dB/0.281 7.92/0.113 9.04/0.098 13.45/ 0.059
15 dB/0.193 9.17/0.067 11.13/0.052 17.21/ 0.026
20 dB/0.160 11.54/0.045 16.49/0.036 21.22/ 0.013

6 The source codes of algorithm 2 (QRS detection algorithm) can be downloaded from http://mda.ia.ac.cn/people/
huxy/codes/SparseECG.rar.
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N

N N
Sensitivity % ,TP

TP FN
( ) =

+ (12)

N

N N
Precision % ,TP

TP FP
( ) =

+
 (13)

and

N N

N N
Detection Error % ,FN FP

TP FN
  ( ) = +

+ (14)

respectively. In equations (12) to (14), N N,TP FN, and NFP refer to the number of true positives, 
false negative prediction (i.e. the number of missing QRS complexes) and false positives (i.e. 
the number of falsely detected QRS complexes), respectively.

Table 2 shows the QRS complex detection results that were derived using our proposed 
algorithm 2 when applied to all 48 ECG data records in the MIT-BIH database. Because some 
of these records have very good signals and our algorithm can detect all the true QRS com-
plexes correctly (both NFN and NFP equal to 0), we only show the records that have instances of 
either false negative or false positive detection in table 2. From this, we find that the detection 
rates for most records still show very high accuracy (with both sensitivity and precision rate 
being higher than 99%). Our algorithm does not perform well in only five records (records 
105, 106, 108, 114, 207), in which the sensitivity or the precision rate are lower than 99%.

Figure 6. Simulated denoising and baseline correction experiment. (a) Simulated noisy 
and baseline wandering signal with a signal-to-noise ratio (SNR)  =15 dB. (b) Denoised 
and baseline corrected signal derived using our algorithm. (c) Detailed comparison 
between noisy signal (black line), real clean signal (red line) and denoised signal 
derived using our approach (blue line). (d) Detailed comparison between real clean 
signal (red line), and the results of using EMD-ST (green line) and DWT-T (blue line).
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We then analyze our QRS detection performance more carefully using record 105 from 
the MIT-BIH database. Figure 7(a) shows the original ECG signal from 1316 to 1332 s, the 
reference QRS annotations (green circles) and the detected QRS complex (red dots) that were 
derived using our proposed algorithm 2. Figures 7(b) and (c) show the denoised and baseline-
corrected ECG signals derived using our proposed algorithm 1 and the QRS peak information 
signal that was reconstructed using modified atoms, respectively. As shown in figures 7(b) 
and (c), our algorithm can remove the noise and the baseline wandering very well; also, the 
QRS peak information signal can correctly indicate the locations of all the QRS-like peaks. 
However, because our QRS detection algorithm does not use the normal RR-interval as the 
prior knowledge, it may lead to some false positive detection results (as seen near 1318 s).

The overall performance of our algorithm in the MIT-BIH database is shown in table 3, 
which also contains comparison results with other different approaches. The approaches used 
for comparison in table 3 include linear filtering (Zhu and Dong 2013), S-transform (Zidelmal 
et al 2014), Artificial neural network (Arbateni and Bennia 2014), Wavelet transform I (Bouaziz 

Table 2. Performance evaluation of proposed algorithm on MIT-BIH database.

Record Total NFN NFP

Sensitivity 
(%)

Precision 
(%)

Error 
(%)

100 2272 0 1 100 99.96 0.04
101 1864 0 2 100 99.89 0.11
104 2228 0 11 100 99.51 0.49
105 2572 8 30 99.69 98.84 1.48
106 2027 39 0 98.08 100 1.92
107 2136 0 9 100 99.58 0.42
108 1762 32 16 98.18 99.08 2.72
109 2530 1 0 99.96 100 0.04
111 2122 1 0 99.95 100 0.05
114 1879 26 14 98.62 99.25 2.13
116 2410 2 4 99.92 99.83 0.25
119 1986 0 1 100 99.95 0.05
121 1861 1 0 99.95 100 0.05
200 2593 0 17 100 99.35 0.66
201 1943 11 1 99.43 99.95 0.62
202 2133 5 1 99.77 99.95 0.28
203 2980 6 0 99.79 100 0.20
205 2656 2 0 99.92 100 0.08
207 1886 43 1 97.72 99.95 2.33
208 2954 6 3 99.80 99.90 0.30
209 3004 0 2 100 99.93 0.07
210 2650 7 0 99.74 100 0.26
213 3248 0 4 100 99.88 0.12
214 2259 1 1 99.96 99.96 0.09
215 3362 5 0 99.85 100 0.15
217 2206 2 0 99.91 100 0.09
221 2427 0 9 100 99.63 0.37
222 2483 3 0 99.88 100 0.12
223 2604 1 0 99.96 100 0.04
228 2049 4 6 99.80 99.71 0.49
232 1780 7 5 99.61 99.72 0.67
234 2752 0 1 100 99.96 0.04
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et al 2014), Quadratic filtering (Phukpattaranont 2015), Mathematical morphology (Zhang and 
Lian 2009), Multiresolution entropy (Farashi 2016), Wavelet transform II (Karimipour and 
Homaeinezhad 2014), Wavelet transform III (Choi et al 2010), and our proposed algorithm 
(denoted as ‘sparse representation’). Because the codes of these other approaches were not 
availabe, statistical data from Phukpattaranont (2015) were used. Because the other methods 
may have different QRS annotation references, the total number of QRS beats of the different 

Figure 7. Denoised and QRS detected version of record 105 in MIT-BIH database. 
(a) Input ECG recording from 1316 to 1332 s; (b) denoised and baseline-corrected 
ECG signals derived using our proposed algorithm 1; (c) reconstructed QRS peak 
information signal. Note that in (a), the entire signal was normalized between  −1 and 
1, and the detected and reference annotations are marked using red dots and green 
circles, respectively.

Table 3. QRS detection performance comparison of proposed algorithm with other 
approaches using the MIT-BIH database.

Methods NTP NFN NFP Sensitivity(%) Precision(%) Error(%)

Linear filtering 109 401 93 91 99.92 99.92 0.17
S-transform 108 323 171 97 99.84 99.91 0.25
Artificial neural 
network

109 273 210 109 99.81 99.91 0.28

Sparse 
representation

109 224 213 139 99.81 99.87 0.32

Wavelet 
transform I

109 354 140 232 99.87 99.79 0.34

Quadratic 
filtering

109 281 202 210 99.82 99.81 0.38

Mathematical 
morphology

109 297 213 204 99.80 99.81 0.38

Multiresolution 
entropy

109 692 273 163 99.75 99.85 0.39

Wavelet 
transform II

115 945 192 308 99.81 99.70 0.49

Wavelet 
transform III

109 118 376 218 99.66 99.80 0.54
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approaches may vary slightly. However, the average detection error rate can still reflect the 
general performance levels of the different algorithms, and thus we have ordered these methods 
based on this index in table 3. As shown in the table, for the MIT-BIH database, the perfor-
mance of our proposed algorithm are comparable to other state-of-the-art approaches. Unlike 
some learning-based algorithms that can only train a model to detect QRS-complex, e.g. ANN-
based algorithm (Arbateni and Bennia 2014), our algorithm can also enhance the ECG signals 
for further analysis and diagnosis. While for those fixed-basis based algorithms, like wavelet-
based algorithms (Addison 2005), our proposed algorithm uses adaptive atoms to approximate 
the individual ECG signal. That means, our algorithm can extract the exact waveform morph-
ology adaptively from a specific ECG lead signal and requires less subjective parameteriza-
tions. The adaptive learned dictionary can also be used for some further applications.

However, the learning-based algorithm do have some limitations. Compared with tra-
ditional derivative-based methods, a major drawback of learning-based approaches is that 
a sufficiently large training set must be set aside for training. This may present a problem 
for applications where only limited data is available. Another limitation of learning-based 
approaches is that the dictionary and coefficients learned from a subset of the ECG signal 
may not be always generalizable to the remainder of the signal when the signal is highly non-
stationary. Therefore, building an abundant and diversified training dataset is an important 
issue for improving learning-based approaches.

Moreover, if an arrhythmia or abnormal ventricular conduction occurs infrequently in 
an ECG time series, there is risk that this algorithm will miss the different morphologies 
during the random selection process used to form a training set. In such cases, an anomaly 
detector proposed in Dunning and Friedman (2014) may be used to find whether the newly 
encounter ed morphology can be approximated by the current dictionary sparsely. If not, these 
morphologies may need to be added into the training set and updated into the dictionary to 
better enhance beat detection even in the presence of different rhythm types.

6. Conclusions

In this paper, a sparse representation-based ECG signal enhancement and QRS complex 
detection approach is presented. The sparse and redundant representation is a recently estab-
lished signal analysis tool that can effectively learn inner structures from noisy input signals. 
First, we analyze the characteristics of the P-waves, T-waves, and QRS complexes in the ECG 
recordings and the smoothly-varying baseline wandering revealed in the learned dictionaries. 
Then, based on the characteristics of the atoms in the learned dictionary, we divide the diction-
ary into two subsets, and then extract the intrinsic ECG waves without the baseline wandering 
from the input ECG recording. Finally, the atoms with large kurtosis values have been modi-
fied to produce an impulse function that is used to locate the QRS complexes. The simulated 
and real-life experimental results demonstrate that our approach can effectively enhance ECG 
recordings with high noise levels and baseline wandering, and can then detect the QRS com-
plexes correctly and accurately from these enhanced ECG signals.

Importantly, with the emergence of portable devices and need for real-time processing, our 
algorithm can easily be capable of real-time ECG signal enhancement and beat detection since 
the ECG reconstruction process using a sparse representation approach is not computationally 
heavy. The rate-limiting step is the actual training of the dictionary. To overcome this, certain 
steps can be taken to enhance efficiency. For instance, a subject’s historic data can be used to 
construct a preliminary training set. If the ECG morphology changes due to variations in elec-
trophysiology or electrode placement, then the new ECG morphology can be added into the 
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training set to update the dictionary. Because our training algorithm uses ‘update and reuse’ 
strategy (Smith and Elad 2013), the updating process of an already trained dictionary is also 
very fast. However, given the possible non-stationarities observed in an individual ECG, the 
frequency and overall effectiveness of these update remains largely unknown. So, the general 
implementation of this algorithm to such real-time systems and to clinical situations (with 
varying pathologies) warrants further study.
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